Домой / Английский / Вещества на земле и в космосе. Космохимия: что это? Смотреть что такое "Космохимия" в других словарях

Вещества на земле и в космосе. Космохимия: что это? Смотреть что такое "Космохимия" в других словарях

В то время как «горячими» ядерными процессами в космосе - плазменным состоянием , нуклеогенезом (процессом элементов) внутри звёзд и др. - в основном занимается физика. - новая область знания, получившая значительное развитие во 2-й половине 20 в. главным образом благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём излучения Солнца, звёзд и, отчасти, внешних слоев планет. Этот метод позволил открыть элемент на Солнце ещё до того, как он был обнаружен на Земле. Единственным прямым методом изучения космических тел был и фазового состава различных метеоритов, выпадавших на Землю. Так был накоплен значительный материал, имеющий фундаментальное значение и для дальнейшего развития . Развитие космонавтики, полёты автоматических станций к планетам Солнечной системы - Луне, Венере, Марсу - и, наконец, посещение человеком Луны открыли перед совершенно новые возможности. Прежде всего - это непосредственное исследование Луны при участии космонавтов или путём забора образцов автоматическими (подвижными и стационарными) аппаратами и доставка их на Землю для дальнейшего изучения в химических лабораториях. Кроме того, автоматические спускаемые аппараты сделали возможным изучение и условий его существования в и на поверхности др. планет Солнечной системы, прежде всего Марса и Венеры. Одна из важнейших задач изучение на основе состава и распространённости космических тел, стремление объяснить на химической основе их происхождение и историю. Наибольшее внимание в уделяется проблемам распространённости и распределения . Распространённость в космосе определяется нуклеогенезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва или Mg или Li и др. Распределение по фазам в космических процессах исключительно разнообразно. На агрегатное и фазовое состояние в космосе на разных стадиях его превращений оказывают разностороннее влияние:1) огромный диапазон , от звёздных до абсолютного нуля; 2) огромный диапазон , от миллионов в условиях планет и звёзд до космического ; 3) глубоко проникающие галактическое и солнечное излучения различного состава и интенсивности; 4) излучения, сопровождающие превращения нестабильных в стабильные; 5) магнитное, гравитационное и др. физические поля. Установлено, что все эти факторы влияют на состав внешней коры планет, их газовых оболочек, метеоритного , космической и др. При этом процессы фракционирования в космосе касаются не только атомного, но и изотопного состава. Определение изотопных , возникших под влиянием излучений, позволяет глубоко проникать в историю процессов образования планет, астероидов, метеоритов и устанавливать возраст этих процессов. Благодаря экстремальным условиям в космическом пространстве протекают процессы и встречаются состояния , не свойственные Земле: плазменное состояние звёзд (например, Солнца); конденсирование Не, На, CH 4 , NH 3 и др. легколетучих в больших планет при очень низких ; образование нержавеющего в космическом при на Луне; хондритовая структура каменных метеоритов; образование сложных органических в метеоритах и, вероятно, на поверхности планет (например, Марса). В межзвёздном пространстве обнаруживаются в крайне малых и многих элементов, а также ( , и т. д.) и, наконец, идёт синтез различных сложных (возникающих из первичных солнечных Н, CO, NH 3 , O 2 , N 2 , S и других простых соединений в равновесных условиях при участии излучений). Все эти органические в метеоритах, в межзвёздном пространстве - оптически не активны.

С развитием астрофизики и некоторых др. наук расширились возможности получения информации, относящейся к . Так, поиски в межзвёздной среде ведутся посредством методов радиоастрономии. К концу 1972 в межзвёздном пространстве обнаружено более 20 видов , в том числе несколько довольно сложных органических , содержащих до 7 . Установлено, что наблюдаемые их в 10-100 млн. раз меньше, чем . Эти методы позволяют также посредством сравнения радиолиний изотопных разновидностей одной (например, H 2 12 CO и H 2 13 CO) исследовать изотопный состав межзвёздного и проверять правильность существующих теорий происхождения .

Исключительное значение для познания космоса имеет изучение сложного многостадийного процесса низкотемпературной , например перехода солнечного в твёрдое планет Солнечной системы, астероидов, метеоритов, сопровождающегося конденсационным ростом, аккрецией (увеличением массы, «нарастанием» любого путём добавления частиц извне, например из газопылевого облака) и агломерацией первичных агрегатов (фаз) при одновременной потере летучих в космического пространства. В космическом , при относительно низких (5000-10000 °С), из остывающей последовательно выпадают твёрдые фазы разного химического состава (в зависимости от ), характеризующиеся различными энергиями связи, окислительными потенциалами и т. п. Например, в хондритах различают силикатную, металлическую, сульфидную, хромитную, фосфидную, карбидную и др. фазы, которые агломерируются в какой-то момент их истории в каменный метеорит и, вероятно, подобным же образом и в планет земного типа.

Далее в планетах происходит процесс дифференциации твёрдого, остывающего на оболочки - металлическое ядро, силикатные фазы (мантию и кору) и - уже в результате вторичного разогревания планет теплотой радиогенного происхождения, выделяющейся при распаде радиоактивных , и и, возможно, других элементов. Такой процесс выплавления и при вулканизме характерен для Луны, Земли, Марса, Венеры. В его основе лежит универсальный принцип зонного , разделяющего легкоплавкое (например, коры и ) от тугоплавкого мантии планет. Например, первичное солнечное CaSiO 3 + CO 2 достигает равновесного состояния, при котором в ней содержится 97% CO 2 при 90 атм. Пример Луны говорит о том, что вторичные (вулканические) не удерживаются небесным телом, если его масса невелика.

Соударения в космическом пространстве (либо между частицами метеоритного , либо при налёте метеоритов и др. частиц на поверхность планет) благодаря огромным космическими скоростям движения могут вызвать тепловой , оставляющий следы в структуре твёрдых космических тел, и образование метеоритных кратеров. Между космическими телами происходит . Например, по минимальной оценке, на Землю ежегодно выпадает не меньше 1× в другие, а в общем случае - к изменению изотопного или атомного состава »,1971, в. 11; Аллер Л. Х., пер. с англ., М., 1963; Сиборг Г. Т., Вэленс Э. Г., Элементы Вселенной, пер. с англ., 2 изд., М., 1966; Merrill P. W., Space chemistry, Ann Arbor, 1963; Spitzer L., Diffuse matter in space, N. Y.,1968; Snyder L. E., Buhl D., Molecules in the interstellar medium, «Sky and Telescope», 1970, v. 40, p. 267, 345.

Природа щедро разбросала свои материальные ресурсы по нашей планете. Но нетрудно заметить зависимость: чаще всего человек использует те веще­ства, запасы сырья которых ограничены, и наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти без­граничны. В самом деле, 98,6% массы физически доступного слоя Земли со­ставляют всего восемь химических элементов: железо (4,6%) , кислород (47%), кремний (27,5%), магний (2,1%), алюминий (8,8%), кальций (3,6%), натрий (2,6%), калий (2,5%), никель. Более 95% всех металлических изделий, конст­рукций самых разнообразных машин и механиз­мов, транспортных путей произ­водятся из железорудного сырья. Ясно, что такая практика расточительна с точки зрения как ис­черпания ресурсов железа, так и энергетических затрат на пер­вичную обработку железорудного сырья.

Глядя на приведенные здесь данные о распространенности восьми названных химических элементов, можно смело утвер­ждать о больших возможностях в ис­пользовании алюминия, а затем магния и, может быть, кальция в создании ме­таллических материалов ближайшего будущего,но для этого должны быть раз­работаны энергоэкономичные методы производства алюминия с целью получе­ния хлорида алюминия и восстановле­ния последнего до металла. Этот метод был уже опробован в ря­де стран и дал основание для проектирования алюми­ниевых за­водов большой мощности. Но выплавка алюминия в масштабах, со­поставимых с производством чугуна, стали и ферросплавов, еще не может быть реализована в самое ближайшее время, по­тому что эта задача должна решаться параллельно с разработкой соответствующих алюминиевых сплавов, способных конкуриро­вать с чугуном, сталью и другими материалами из железорудного сы­рья.

Широкая распространенность кремния служит посто­янным укором человече­ству в смысле чрезвычайно низкой сте­пени использования этого химического элемента в производстве материалов. Силикаты составляют 97% всей массы земной коры. И это дает основание утверждать, что именно они должны быть основным сырьем для производства практически всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с ме­таллами. Надо, кроме того, принимать во внимание еще и огромные скопления промышленных отходов силикатного характера, таких, как "пустая порода" при добыче угля, "хвосты" при добыче металлов из руд, зола и шлаки энергетиче­ского и металлургического производст­ва. И как раз эти силикаты необходимо в первую очередь превращать в сырье для строительных материалов. С одной стороны, это обещает большие выгоды, так как сырье не надо добывать, оно в готовом виде ждет своего потребителя. А с другой - его утилизация является мерой борьбы с загрязнением окружающей среды.

В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматри­вать только как дополнение к ним.

Вопрос 54. Развитие представлений о химическом строение вещества. Химиче­ские соединения.

Химией называют науку о химических элементах и их соедине­ниях.

История развития химических концепций начинается с древних времен. Де­мокрит, Эпикур высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качест­венное различие. Аристо­тель и Эмпедокл считали, что в телах сочетаются

Первый по-настоящему действенный способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627-1691).Результаты экспериментальных исследований Р. Бойля пока­зали, что качества и свойства тел зависят от того, из каких ма­териальных элементов они состоят.

В 1860 г. выдающимся русским химиком А.М. Бутлеровым (1828-1886) была создана теория химического строения вещества - возник более высокий уровень развития химических знаний - структурная химия.

В этот период зарождалась технология органических веществ.

Под влиянием новых требований производства возникло учение о химиче­ских процессах, в котором учитывалось изменение свойств вещества под влия­нием температуры, давления, раство­рителей и других факторов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов.

В 1960-1970 гг. появился следующий, более высокий, уровень химических знаний - эволюционная химия. В основе ее лежит принцип самоорганизации химических систем, т. е. принцип применения химического опыта высокоорга­низованной живой природы.

До недавнего времени химики считали ясным, что следует относить к хими­ческим соединениям, а что - к смесям. Еще в 1800-1808 гг. французский уче­ный Ж. Пруст (1754-1826) установил закон постоянства состава: любое инди­видуальное химическое соединение обладает строго определенным, неизмен­ным составом, прочным притяжением составных частей (атомов) и тем отлича­ется от смесей

С конца XIX в. возобновились исследования, подвергавшие сомнению абсо­лютизацию закона постоянства состава. Выдаю­щийся русский химик Н.С. Кур­наков (1860-1941) в результате исследований интерметалличе­ских соедине­ний, т. е. соединений, состоящих из двух металлов, установил образование на­стоящих индивидуаль­ных соединений переменного состава и нашел границы их од­нородности на диаграмме "состав-свойство", отделив от них об­ласти сущест­вования соединений стехиометрического состава. Химические соединения пе­ременного состава он назвал бертоллидами , а за соединения­ми постоянного со­става оставил названиедальтониды .

Как показали результаты физических исследований, суть проблемы химиче­ских соединений состоит не столько в посто­янстве или непостоянстве химиче­ского состава, сколько в физи­ческой природе химических связей, объединяю­щих атомы в единую квантово-механическую систему - молекулу.

Число химических соединений огромно. Они отличаются как составом, так и химическими и физическими свойствами. Но все же химическое соединение - качественно определенное веще­ство, состоящее из одного или нескольких хи­мических элемен­тов.

Бесконечно разнообразные живые организмы состоят из ограниченного набора атомов, появлением которого мы в значительной степени обязаны звездам. Самое мощное событие в жизни Вселенной - Большой Взрыв - заполнило наш мир веществом весьма скудного химического состава.
Считается, что объединение нуклонов (протонов и нейтронов) в расширяющемся пространстве не успело продвинуться дальше гелия. Поэтому догалакгическая Вселенная была заполнена почти исключительно ядрами водорода (то есть попросту протонами) с небольшой - примерно четверть по массе - добавкой ядер гелия (альфа-частиц). Больше в ней, не считая легких электронов, не было практически ничего. Как именно происходило первичное обогащение Вселенной ядрами более тяжелых элементов, мы пока сказать не можем. По сей день не обнаружена ни одна «первичная» звезда, то есть объект, состоящий только из водорода и гелия. Существуют специальные программы поиска звезд с низким содержанием металлов (напомним, что астрономы условились называть «металлами» все элементы тяжелее гелия), и эти программы показывают, что звезды «экстремально низкой металличности» в нашей Галактике крайне редки. Они есть, у некоторых рекордных экземпляров содержание, например, железа уступает солнечному в десятки тысяч раз. Однако таких звезд - единицы, и вполне может оказаться, что «в их лице» мы имеем дело не с «почти первичными» объектами, а просто с какой-то аномалией. В целом же даже в самых старых звездах Галактики содержатся изрядные количества углерода, азота, кислорода и более тяжелых атомов. Это означает, что даже наиболее древние галактические светила - в действительности не первые: до них во Вселенной уже имелись какие-то «фабрики» по производству химических элементов.

Европейская инфракрасная космическая обсерватория Herschel обнаружила в БТО спектральные «отпечатки» органических молекул. На этом изображении на инфракрасный снимок Туманности Ориона, полученный космическим телескопом Spitzer (NASA), наложен ее спектр, снятый спектрографом высокого разрешения HIFI обсерватории Herschel. Он наглядно демонстрирует ее насыщенность сложными молекулами: в спектре легко отождествляются линии воды, моноксида углерода и диоксида серы, а также органических соединений - формальдегида, метанола, диметилового эфира, синильной кислоты и их изотопных аналогов. Неподписанные пики принадлежат многочисленным пока не идентифицированным молекулам.

Сейчас считается, что такими фабриками могли быть сверхмассивные звезды так называемого населения третьего (III) типа. Дело в том, что тяжелые элементы - не просто «приправа» к водороду и гелию. Это важные участники процесса звездообразования, которые позволяют сжимающемуся протозвездному газовому сгустку сбрасывать тепло, выделяющееся при сжатии. Если лишить его такого теплоотвода, он попросту не сможет сжаться - то есть не сможет стать звездой... Точнее, сможет, но только при условии, что его масса очень велика - в сотни и тысячи раз больше, чем у современных звезд. Поскольку звезда живет тем меньше, чем больше ее масса, первые гиганты существовали очень недолго. Они прожили короткие яркие жизни и взорвались, не оставив никакого следа, кроме атомов тяжелых элементов, успевших синтезироваться в их недрах или образовавшихся непосредственно при взрывах.
В современной Вселенной практически единственным поставщиком тяжелых элементов является звездная эволюция. В наиболее значительной степени таблицу Менделеева «заполняют», скорее всего, звезды, масса которых превышает солнечную более чем на порядок. Если на Солнце и других подобных светилах термоядерный синтез в ядре не заходит дальше кислорода, то более массивные объекты в процессе эволюции приобретают «луковичную» структуру: их ядра окружены слоями, и чем глубже слой - тем более тяжелые ядра в нем синтезируются. Здесь цепочка термоядерных превращений заканчивается уже не кислородом, а железом, с образованием промежуточных ядер - неона, магния, кремния, серы и других.

Большая Туманность Ориона (БТО) - одна из ближайших областей звездообразования, содержащая большие количества газа, пыли и новорожденных звезд. Одновременно эта туманность является одной из крупнейших «химических фабрик» в нашей Галактике, причем ее истинная «мощность», равно как и пути синтеза в ней молекул межзвездного вещества, астрономам пока не совсем понятны. Это изображение получено с помощью Камеры широкого поля (Wide Field Imager Camera), установленной на 2,2-метровом телескопе MPG/ES0 обсерватории Ла Силья в Чили.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Чтобы обогатить Вселенную этой смесью, мало синтезировать атомы - нужно еще и выбросить их в межзвездное пространство. Это происходит при вспышке сверхновой: когда у звезды образуется железное ядро, она теряет устойчивость и взрывается, разбрасывая вокруг себя часть продуктов термоядерного синтеза. Попутно в разлетающейся оболочке происходят реакции, порождающие ядра тяжелее железа. К похожему результату приводят и вспышки сверхновых другого типа - термоядерные взрывы на белых карликах, масса которых из-за перетекания вещества со звезды-спутника или благодаря слиянию с другим белым карликом становится больше предела Чандрасекара (1,4 солнечной массы).
В обогащение Вселенной рядом элементов - в том числе углеродом и азотом, необходимыми для синтеза органических молекул - заметный вклад вносят также менее массивные звезды, заканчивающие свою жизнь образованием белого карлика и расширяющейся планетарной туманности. На завершающем этапе эволюции в их оболочках также начинают происходить ядерные реакции, усложняющие элементный состав вещества, позже выбрасываемого в космическое пространство.
В итоге межзвездное вещество Галактики, и по сей день состоящее в основном из водорода и гелия, оказывается загрязненным (или обогащенным - это уж как посмотреть) атомами более тяжелых элементов.

Букминстерфуллерены (сокращённо «фуллерены» или «букиболы») - крохотные сферические структуры, состоящие из четного числа (но не менее 60) углеродных атомов, соединенных в подобие узора футбольного мяча - впервые были обнаружены в спектрах планетарной туманности в Малом Магеллановом Облаке (ММО), одной из ближайших к нашей Галактике звездных систем. Открытие совершила в июле 2010 г. рабочая группа космического телескопа Spitzer (NASA), ведущего наблюдения в инфракрасном диапазоне. Общая масса содержащихся в туманности фуллеренов всего в пять ра? меньше массы Земли. На фоне снимка ММО, сделанного телескопом Spitzer, показано увеличенное изображение планетарной туманности (меньшая врезка) и найденных в ней молекул фуллерена (большая врезка), состоящих из 60 атомов углерода. К настоящему времени уже получены сообщения о регистрации характерных линий подобных молекул в спектрах объектов, расположенных в пределах Млечного Пути.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Эти атомы переносятся общими «течениями» галактического газа, вместе с ним сгущаются в молекулярные облака, попадают в протозвездные сгустки и протопланетные диски... чтобы в конечном итоге стать частью планетных систем и тех существ, которые их населяют. По крайней мере, один пример такой обитаемой планеты нам известен вполне достоверно.

Органика из неорганики


Земная жизнь - во всяком случае, с научной точки зрения - основана на химии и представляет собою цепочку взаимопревращений молекул. Правда, не каких-нибудь, а весьма сложных, но все-таки молекул - комбинаций атомов углерода, водорода, кислорода, азота, фосфора и серы (и пары десятков реже встречающихся элементов) в различных пропорциях. Сложность даже самых примитивных «живых» молекул долгое время мешала распознать в них обычные химические соединения. Существовало представление о том, что вещества, входящие в состав живых организмов, наделены особым качеством - «жизненной силой», поэтому заниматься их изучением должна специальная отрасль науки - органическая химия.
Одним из переломных моментов в истории химии считаются опыты Фридриха Вёлера (Friedrich Wohler), который в 1828 г. впервые синтезировал мочевину - органическое вещество - из неорганического (цианата аммония). Эти опыты стали первым шагом на пути к важнейшей концепции - признанию возможности зарождения жизни из «неживых» ингредиентов. В конкретных химических терминах ее впервые сформулировал в начале 1920-х годов советский биолог Александр Опарин. По его мнению, средой для возникновения жизни на Земле стала смесь простых молекул (аммиака, воды, метана и пр.), известная сейчас как «первичный бульон». В нем под воздействием внешних «впрысков» энергии (например, молний) небиологическим путем синтезировались простейшие органические молекулы, которые затем за очень длительный срок «собрались» в высокоорганизованные живые существа.

Экспериментальным доказательством возможности органического синтеза в «первичном бульоне» в начале 1950-х годов стали знаменитые опыты Хэролда Юри и Стэнли Миллера (Harold Urey, Stanley Miller), заключавшиеся в пропускании электрических разрядов сквозь смесь перечисленных выше молекул. Через пару недель эксперимента в этой смеси находили богатый ассортимент органики, включая простейшие аминокислоты и сахара. Эта наглядная демонстрация простоты абиогенеза имела отношение не только к проблеме происхождения земной жизни, но и к более масштабной проблеме жизни во Вселенной: поскольку никакие экзотические условия для синтеза органики на молодой Земле не требовались, логично было бы допустить, что подобные процессы имели место (или будут иметь место) на других планетах.

Поиски признаков жизни


Если до середины XX века в качестве наиболее вероятного места обитания «братьев по разуму» рассматривался фактически только Марс, то после окончания Второй мировой войны установление контактов на межзвездных расстояниях стало казаться делом ближайшего будущего. Именно в то время зародились основы новой науки, находящейся на стыке астрономии и биологии. Ее называют по-разному - экзобиология, ксенобиология, биоастрономия - но чаще всего употребляется название «астробиология». И одним из самых неожиданных астробиологических открытий за последние десятилетия стало осознание того факта, что простейшим «кирпичикам» жизни не было необходимости синтезироваться на Земле из неживой материи, в «первичном бульоне». Они могли попадать на нашу планету уже в готовом состоянии, ибо органические молекулы, как выяснилось, в изобилии присутствуют не только на планетах, но и - чего изначально даже не подозревали - в межзвездном газе.
Мощнейшим инструментом для изучения внеземного вещества является спектральный анализ. Он основан на том, что электроны в атоме находятся в состояниях - или, как принято говорить, занимают уровни - со строго определенными энергиями, и переходят с уровня на уровень, излучая или поглощая фотон, энергия которого равна разности энергий начального и конечного уровня. Если атом находится между наблюдателем и каким-либо источником света (например, фотосферой Солнца), он будет «выедать» из спектра этого источника только фотоны определенных частот, способные вызывать переходы электронов между энергетическими уровнями данного атома. В спектре на этих частотах появятся темные провалы - линии поглощения. Поскольку набор уровней индивидуален не только для каждого атома, но и для каждого иона (атома, лишенного одного или нескольких электронов), по набору спектральных линий можно надежно установить, какие именно атомы их породили. Например, по линиям в спектре Солнца и других звезд можно узнать, из чего состоят их атмосферы.
В 1904 г. Йоханнес Хартман (Johannes Hartmann) первым установил важный факт: не все линии в спектрах звезд возникают в звездных атмосферах. Некоторые из них порождаются атомами, находящимися гораздо ближе к наблюдателю - не возле звезды, а в межзвездном пространстве. Так были впервые обнаружены признаки существования межзвездного газа (точнее, только одного из его компонентов - ионизированного кальция).
Нельзя сказать, что это стало шокирующим открытием. В конце концов, почему бы в межзвездной среде (МЗС) не находиться ионизированному кальцию? Но мысль о том, что в ней могут присутствовать не только ионизированные и нейтральные атомы различных элементов, но и молекулы, долгое время казалась фантастической. МЗС в то время считалась местом, непригодным для синтеза хоть сколько-нибудь сложных соединений: крайне низкие плотности и температуры должны замедлять скорости химических реакций в ней практически до нуля. А если вдруг какие-то молекулы там все же появятся, они немедленно снова распадутся на атомы под действием света звезд.
Поэтому между открытием межзвездного газа и признанием существования межзвездных молекул прошло более 30 лет. В конце 1930-х годов в ультрафиолетовой области спектра были найдены линии поглощения МЗС, которые поначалу не удавалось приписать какому-либо химическому элементу. Объяснение оказалось простым и неожиданным: эти линии принадлежат не отдельным атомам, а молекулам - простейшим двухатомным соединениям углерода (СН, CN, СН+). Дальнейшие спектральные наблюдения в оптическом и ультрафиолетовом диапазонах позволили обнаружить линии поглощения свыше десятка межзвездных молекул.

«Подсказка» радиоастрономии


Подлинный расцвет исследований межзвездного «химического ассортимента» начался после появления радиотелескопов. Дело в том, что энергетические уровни в атоме - если не вдаваться в подробности - связаны только с движением электронов вокруг ядра, но у молекул, объединяющих несколько атомов, имеются дополнительные «движения», отражающиеся в спектре: молекула может вращаться, вибрировать, закручиваться... И с каждым из этих движении связана энергия, которая, как и энергия электрона, может иметь лишь фиксированный набор значений. Различные состояния молекулярного вращения или колебания тоже называются «уровнями». При переходе с уровня на уровень молекула также излучает или поглощает фотон. Важное отличие состоит в том, что энергии вращательных и колебательных уровней сравнительно близки. Поэтому их разность невелика, и фотоны, поглощаемые либо излучаемые молекулой при переходе с уровня на уровень, попадают не в ультрафиолетовый и даже не в видимый диапазон, а в инфракрасный (колебательные переходы) и в радиодиапазон (вращательные переходы).

Советский астрофизик Иосиф Шкловский первым обратил внимание на то, что спектральные линии излучения молекул нужно искать в радиодиапазоне. Конкретно он писал про молекулу (точнее, свободный радикал) гидроксила ОН, которая при определенных условиях становится источником радиоизлучения на длине волны 18 см, очень удобной для наблюдений с Земли. Именно гидроксил и стал первой молекулой в МЗС, обнаруженной в 1963 г. в ходе радионаблюдений и дополнившей список уже известных двухатомных межзвездных молекул.
Но дальше стало интереснее. В 1968 г. были опубликованы результаты наблюдений трех- и четырехатомных молекул - воды и аммиака (Н 2 0, NH 3). А годом позже появилось сообщение об открытии в МЗС первой органической молекулы - формальдегида (Н 2 СO). С тех пор астрономы открывают по нескольку новых межзвездных молекул ежегодно, так что сейчас полное их число превысило две сотни. Конечно, доминируют в этом списке простые соединения, включающие от двух до четырех атомов, но значительную часть (более трети) составляют многоатомные молекулы.
Добрую половину многоатомных межзвездных соединений в земных условиях мы однозначно отнесли бы к органике: формальдегид, диметиловый эфир, метиловый и этиловый спирт, этиленгликоль, метилформиат, уксусная кислота... Самая «длинная» молекула из числа открытых в МЗС была найдена в 1997 г. в одном из плотных сгустков молекулярного облака ТМС-1 в созвездии Тельца. Для Земли это не очень обычное соединение из семейства цианополиинов, представляющее собой цепочку из 11 атомов углерода, к одному концу которой «прикреплен» атом водорода, к другому - атом азота. В этом же сгустке обнаружены и другие органические молекулы, но по каким-то причинам он особенно богат именно молекулами цианополиинов с углеродными цепочками различной длины (3, 5, 7, 9, 11 атомов), за что получил название «цианополииновый пик».
Еще один известный объект с богатым «органическим содержанием» - молекулярное облако Sgr B2(N), расположенное вблизи центра нашей Галактики в направлении созвездия Стрельца. В нем открыто особенно много сложных молекул. Однако оно не обладает в этом отношении какой-то исключительностью - скорее, тут срабатывает эффект «поиска под фонарем». Обнаружение новых молекул, особенно органических - очень сложная задача, и наблюдатели зачастую предпочитают направлять телескопы на те участки неба, которые с большей вероятностью сулят успех. Поэтому мы очень много знаем о концентрации органики в молекулярных облаках Тельца, Ориона, Стрельца, и почти не располагаем информацией о содержании сложных молекул во многих других подобных облаках. Но это отнюдь не значит, что органики там нет - просто до этих объектов еще «антенны не дошли».

Трудности расшифровки


Здесь необходимо пояснить, что в данном случае означает «сложность». Даже элементарный анализ звездных спектров - весьма непростая задача. Да, набор линий каждого атома и иона строго индивидуален, но в спектре звезды друг на друга накладываются линии многих десятков элементов, и «рассортировать» их бывает очень нелегко. В случае же спектров органических молекул ситуация осложняется сразу по нескольким направлениям. Большинство многочисленных линий излучения (поглощения) атомов и ионов попадает в узкий спектральный диапазон, доступный для наблюдений с Земли. У сложных молекул количество линий также исчисляется тысячами, но эти линии «разбросаны» значительно шире - от ближнего ИК-диапазона (единицы и десятки микрометров) до радиодиапазона (десятки сантиметров).
Допустим, мы хотим доказать, что в молекулярном облаке имеется молекула акрилонитрила (CH 2 CHCN). Для этого нужно, во-первых, знать, в каких линиях излучает эта молекула. Но для многих соединений такие данные отсутствуют! Теоретические методы далеко не всегда позволяют рассчитать положение линий, а в лаборатории спектр молекулы зачастую не удается измерить, например, потому, что ее сложно выделить в чистом виде. Во-вторых, необходимо рассчитать относительные интенсивности этих линий. Их яркость зависит от свойств молекулы и от параметров среды (температуры, плотности и пр.), в которой она находится. Теория позволит предсказать, что в исследуемом молекулярном облаке линия на одной длине волны должна быть в три раза ярче линии той же молекулы на другой длине волны. Если найдены линии на нужных длинах волн, но с неправильным отношением интенсивностей - это весомый повод усомниться в правильности их идентификации. Разумеется, для уверенного обнаружения молекулы нужно провести наблюдения облака в максимально широком спектральном диапазоне. Но значительная часть электромагнитного излучения из космоса не достигает поверхности Земли! Значит, приходится либо наблюдать спектр молекулы фрагментарно в «окнах прозрачности» земной атмосферы, что, конечно, не добавляет надежности полученным результатам, либо использовать космический телескоп, что удается сделать крайне редко. Наконец, не стоит забывать, что линии искомой молекулы придется выделять среди других молекул, которых там десятки разновидностей, и у каждой - тысячи линий...
Неудивительно поэтому, что к отождествлению некоторых «представителей» космической органики астрономы идут годами. Показательна в этом отношении история обнаружения в МЗС глицина - простейшей аминокислоты. Хотя сообщения о регистрации в спектрах молекулярных облаков характерных признаков этой молекулы появлялись неоднократно, факт ее наличия все еще не является общепризнанным: хотя многие линии, как будто бы принадлежащие глицину, реально наблюдаются, другие его ожидаемые линии в спектрах отсутствуют, что дает повод усомниться в идентификации.

Лаборатории межзвездного синтеза


Но все это - сложности наблюдений. В теории за последние десятилетия ситуация с межзвездным органическим синтезом существенно прояснилась, и теперь мы четко понимаем, что первоначальные представления о химической инертности МЗС были неверны. Для этого, конечно, пришлось предварительно многое узнать о ее составе и физических свойствах. Значительная доля объема межзвездного пространства действительно «стерильна». Она заполнена очень горячим и разреженным газом с температурами от тысяч до миллионов кельвинов и пронизана жестким высокоэнергетическим излучением. Но попадаются в Галактике и отдельные конденсации межзвездного вещества, где температура низка (от единиц до десятков кельвинов), а плотность - заметно выше средней (сотни и более частиц на кубический сантиметр). Газ в этих конденсациях перемешан с пылью, которая эффективно поглощает жесткое излучение, в результате чего их внутреннее пространство - холодное, плотное, темное - оказывается удобным местом для протекания химических реакций и накопления молекул. В основном такие «космические лаборатории» встречаются в уже упоминавшихся молекулярных облаках. Совокупно они занимают меньше процента общего объема галактического диска, но в них сосредоточена примерно половина массы межзвездной материи Млечного Пути.

Полицикяические ароматические углеводороды (ПАУ) - наиболее сложные соединения, обнаруженные в межзвездном пространстве. На этом инфракрасном снимке области звездообразования в созвездии Кассиопеи показаны структуры молекул некоторых из них (атомы водорода - белые, углерода - серые, кислорода -красные), а также несколько их характерных спектральных линий. Ученые полагают, что в ближайшем будущем спектры ПАУ будут иметь особую ценность для расшифровки химического состава межзвездной среды методами инфракрасной спектроскопии.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Элементный состав молекулярных облаков напоминает состав Солнца. В основном они состоят из водорода - точнее, молекул водорода Н 2 с небольшой «добавкой» гелия. Остальные элементы присутствуют на уровне незначительных примесей с относительным содержанием около 0,1% (для кислорода) и ниже. Соответственно и молекул, включающих эти примесные атомы, тоже очень мало по отношению к самой распространенной молекуле Н 2 . Но почему эти молекулы вообще образуются? На Земле для химического синтеза используются специальные установки, обеспечивающие достаточно высокие плотности и температуры. Как работает межзвездный «химический реактор» - холодный и разреженный?
Здесь нужно помнить, что астрономия имеет дело с другими масштабами времени. На Земле нам нужно получить результат быстро. Природа же никуда не торопится. Синтез межзвездной органики занимает сотни тысяч и миллионы лет. Но даже для таких медленно протекающих реакций необходим катализатор. В молекулярных облаках его роль играют частицы космических лучей. Первым шагом к синтезу сложных органических молекул можно считать формирование связи С-Н. Но если просто взять смесь молекул водорода и атомов углерода - эта связь сама по себе образовываться не будет. Другое дело - если часть атомов и молекул каким-то образом превратить в ионы. Химические реакции с участием ионов протекают куда быстрее. Именно эту начальную ионизацию и обеспечивают космические лучи, инициируя цепочку взаимодействий, в ходе которых атомы тяжелых элементов (углерода, азота, кислорода) начинают «прицеплять» к себе атомы водорода, образуя простые молекулы, в том числе и обнаруженные в МЗС в первую очередь (СН и СН+).
Дальнейший синтез идет еще легче. Двухатомные молекулы присоединяют к себе новые атомы водорода, превращаясь втрех- и четырехатомные (СН 2 +, СН 3 +), многоатомные молекулы начинают реагировать между собой, трансформируясь в более сложные соединения - ацетилен, синильную кислоту (HCN), аммиак, формальдегид, которые, в свою очередь, становятся «кирпичиками» для синтеза комплексной органики.
После того, как космические лучи дали первичный толчок химическим реакциям, важным катализатором межзвездного органического синтеза становятся частицы космической пыли. Они не только защищают внутренние области молекулярных облаков от разрушительного излучения, но и предоставляют свою поверхность для эффективного «производства» многих неорганических и органических молекул. В совокупности реакций нетрудно представить себе образование не только глицина, но и более сложных соединений. В этом смысле можно сказать, что задача обнаружения простейшей аминокислоты имеет скорее спортивный смысл: кто первым уверенно найдет ее в космосе. В том, что глицин в молекулярных облаках присутствует, ученые не сомневаются.

Как выжить «молекулам жизни»


В общем, на данный момент можно считать доказанным, что для синтеза органики не обязателен «первичный бульон». Природа прекрасно справляется с этой задачей и в космическом пространстве. Но имеет ли межзвездная органика какое-то отношение к появлению жизни? Действительно, звезды и планетные системы образуются в молекулярных облаках и, естественно, «вбирают» их вещество. Однако прежде, чем стать планетой, это вещество проходит через достаточно жесткие условия протопланетного диска и не менее жесткие условия молодой Земли. К сожалению, наши возможности исследовать эволюцию органических соединений в протопланетных дисках весьма ограничены. По размеру они очень малы, и искать в них органические молекулы еще сложнее, чем в молекулярных облаках. Пока что в формирующихся планетных системах других звезд обнаружено около десятка молекул. Конечно, в их число входят и простые органические соединения (в частности, формальдегид), но более подробно эволюцию органики в этих условиях мы пока описать не можем.
На помощь приходят исследования нашей собственной планетной системы. Правда, ей уже больше четырех с половиной миллиардов лет «от роду», но часть ее первичного протопланетного вещества и по сей день сохранилась в некоторых метеоритах. Именно в них обилие органики оказалось вполне впечатляющим - особенно в так называемых углистых хондритах, составляющих несколько процентов от общего числа упавших на Землю «небесных камней». Они обладают рыхлой глинистой структурой, богаты связанной водой, но главное - значительную часть их вещества «занимает» углерод, входящий в состав множества органических соединений. Метеоритная органика состоит из относительно простых молекул, среди которых есть и аминокислоты, и азотистые основания, и (карбоновые кислоты, и «нерастворимое органическое вещество», представляющее собой продукт полимеризации (осмоления) более простых соединений. Конечно, мы не можем сейчас уверенно сказать, что эта органика была «унаследована» из вещества протосолнечного молекулярного сгустка, но косвенные признаки на это указывают - в частности, в метеоритах обнаружен явный избыток изотопомеров ряда молекул.

Ацетальдегид (слева) и его изомеры - виниловый спирт и окись этилена - также обнаружены в межзвездном пространстве.

10 восьмиатомных

В 1997 г. радионаблюдения подтвердили наличие в космосе уксусной кислоты.

9 девятиатомных молекул и 17 молекул, содержащих от 10 до 70 атомов

Одни из самых тяжелых (и длинных) молекул, найденных в космическом пространстве, относятся к классу полиинов - они содержат несколько тройных связей, последовательно соединенных «в цепочку» одинарными связями. В земных условиях не встречаются.

МОЛЕКУЛЫ, ОТКРЫТЫЕ К НАСТОЯЩЕМУ ВРЕМЕНИ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Изотопомерами или изотопологами называют молекулы, в которых один или несколько атомов замещены неосновным (не самым распространенным) изотопом химического элемента. Например, изотопомером является тяжелая вода, в которой легкий изотоп водорода протий замещен дейтерием. Особенность химии молекулярных облаков состоит в том, что в них изотопомеры образуются несколько более эффективно, чем «обычные» молекулы. Например, содержание дейтерирован-ого формальдегида (HDCO) может составлять десятки процентов от содержания обычного формальдегида - при том, что в целом атомов дейтерия (D) в космосе в сотню тысяч раз меньше, чем атомов протия (Н). Такое же «предпочтение» межзвездные молекулы отдают изотопу азота 15N против обычного 14N. И такое же относительное переобогащение наблюдается в метеоритной органике.
Пока из имеющихся данных можно сделать три важных вывода. Во-первых, органические соединения очень высокой степени сложности весьма эффективно синтезируются в межзвездной среде нашей и других галактик. Во-вторых, эти соединения могут сохраняться в протопланетных дисках и входить в состав планетезималей - «зародышей» планет. И наконец, даже если органика «не пережила» сам процесс формирования Земли или другой планеты, она вполне могла попасть туда позже с метеоритами (как это происходит и в наши дни).
Естественно, возникает вопрос о том, как далеко мог зайти органический синтез на допланетном этапе. А что, если с метеоритами на Землю попали не «кирпичики» для зарождения жизни, а сама жизнь? В конце концов, в начале XX века казалось невозможным появление в МЗС даже простых двухатомных молекул. Теперь же мы массово находим в молекулярных облаках вещества, названия которых трудно выговорить с первого раза. Обнаружение в МЗС аминокислот - скорее всего, лишь вопрос времени. Что же мешает сделать следующий шаг и предположить, что метеориты занесли на Землю жизнь «в готовом виде»?
И действительно, уже несколько раз в литературе появлялись сообщения о том, что в метеоритах обнаружены остатки простейших внеземных организмов... Однако пока эти сведения слишком ненадежны и разрознены, чтобы можно было уверенно включить их в обшую картину происхождения жизни.

Бовыка Валентина Евгеньевна

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 20 г. Краснодара

Распространение химических элементов на Земле и в космосе. Образование химических элементов в процессе первичного нуклеосинтеза и в недрах звезд.

Реферат по физике

Выполнен ученицей:

10 «Б» класса МБОУ СОШ № 20 г. Краснодара

Бовыка Валентиной

Учитель:

Скрылева Зинаида Владимировна

Краснодар

2016

  1. Химия космоса, что изучает химия космоса.
  2. Некоторые термины.
  3. Химический состав планет Солнечной системы и Луны.
  4. Химический состав комет, метеоритов.
  5. Первичный нуклеосинтез.
  6. Другие химические процессы во вселенной.
  7. Звезды.
  8. Межзвездная среда
  9. Список использованных ресурсов

Химия космоса. Что изучает химия космоса?

Предметом изучения химии космоса является химический состав космических тел (планет, звезд, комет и т.д), межзвездного пространства, а также химические процессы, которые происходят в космосе.

Химия космоса занимается преимущественно процессами, протекающими при атомно-молекулярном взаимодействии веществ, а нуклеосинтезом внутри звезд занимается физика.

Некоторые термины

Для простоты восприятия следующего материала необходим словарь терминов.

Звезды – светящиеся газовые массивные шары, в недрах которых протекают реакции синтеза химических элементов.

Планета – небесные тела, которые вращаются по орбитам вокруг звезд или их остатков.

Кометы – космические тела, которые состоят из замороженных газов, пыли.

Метеориты – малые космические тела, попадающие на Землю из межпланетного пространства.

Метеоры – явления в виде светящегося следа, которое обусловлено попаданием в атмосферу Земли метеорного тела.

Межзвездная среда – разряженное вещество, электромагнитное излучение и магнитное поле, заполняющие пространство между звездами.

Основные компоненты межзвездного вещества: газ, пыль, космические лучи.

Нуклеосинтез – процесс образования ядер химических элементов (тяжелее водорода) в ходе реакций ядерного синтеза.

Химический состав планет Солнечной системы и Луны

Планеты Солнечной системы – это небесные тела, вращающиеся вокруг звезды под названием Солнце.

Солнечная система состоит из 8 планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун.

Рассмотрим каждую планету в отдельности.

Меркурий

Самая близкая планета к Солнцу в Солнечной системе, самая маленькая планета. Диаметр Меркурия составляет примерно 4870 км.

Химический состав

Ядро планеты – железное, ферромагнитное. Содержание железа = 58%

Атмосфера по одним данным состоит большей частью из азота (N 2 ) с примесью углекислого газа (CO 2 ), по другим – из гелия (He), неона (Ne) и аргона (Ar).

Венера

Вторая планета Солнечной системы. Диаметр ≈ 6000 км.

Химический состав

Ядро железное, мантия содержит силикаты, карбонаты.

Атмосфера состоит на 97% из углекислого газа (CO 2 ), остальное приходится на азот (N 2 ), воду (H 2 O) и кислород (O 2 ).

Земля

Третья планета Солнечной системы, единственная планета Солнечной системы с наиболее благоприятными условиями для жизни. Диаметр примерно 12500 км.

Химический состав

Ядро железное. Земная кора содержит кислород O 2 (49%), кремний Si (26%), алюминий Al (4,5%), а также другие химические элементы. Атмосфера на 78% состоит из азота (N 2 ), на 21% из кислорода (O 2 ) и на 0,03% из углекислого газа (CO 2 ), остальное приходится на инертные газы, пары воды и примеси. Гидросфера состоит в большей степени из кислорода O 2 (85,82%), водорода H 2 (10,75%) и других элементов. В состав всех живых существ обязательно входит углерод (C).

Марс

Марс – четвертая планета Солнечной системы. Диаметр примерно 7000 км

Химический состав

Ядро железное. В коре планеты содержатся оксиды железа и силикаты.

Юпитер

Юпитер – пятая планета от Солнца. Самая крупная планета солнечной системы. Диаметр более 140000 км.

Химический состав

Ядро – сжатые водород (H 2 ) и гелий (He). В атмосфере содержатся водород (H 2 ), метан (CH 4 ), гелий (He), аммиак (NH 3 ).

Сатурн

Сатурн – шестая планета от Солнца. Имеет диаметр около 120000 км.

Химический состав

Данных о ядре и земной коре нет. Атмосфера состоит из тех же газов, что и атмосфера Юпитера.

Уран и Нептун

Уран и Нептун – седьмая и восьмая планеты соответственно. Обе планеты имеют примерный диаметр 50000 км.

Химический состав

Данных о ядре и коре нет. Атмосфера образована метаном (CH 4 ), гелием (He), водородом (H 2 ).

Луна

Луна – спутник Земли, ее сырьевая база. Лунный грунт называют реголитом, в ее состав входят оксид кремния (IV), оксид алюминия и оксиды других металлов, много урана, нет воды.

Химический состав комет, метеоритов

Метеориты

Метеориты бывают железными, железно-каменными и каменными. Чаще всего на Землю падают именно каменные метеориты. В среднем по подсчетам на каждый железный метеорит приходится 16 каменных.

Химический состав железных метеоритов: 90% железа (Fe), 8,5% никеля (Ni), 0,6% кобальта (Co) и 0,01% кремния (Si).

Каменные метеориты в основном состоят из кислорода (0 2 ) (41%) и кремния (Si) (21%).

Кометы

Кометы представляют собой твердые тела, которые окружены газовой оболочкой. Ядро состоит из замороженных метана (CH 4 ) и аммиака (NH 3 ) с минеральными примесями. В газовых кометах было обнаружено множество радикалов и ионов. Наиболее современные наблюдения проводились за кометой Хейла-Боппа, в ее состав входили сероводород, вода, тяжелая вода, сернистый газ, формальдегид, метанол, муравьиная кислота, циановодород, метан, ацетилен, этан, фостерит и другие соединения.

Первичный нуклеосинтез

Для рассмотрения первичного нуклеосинтеза обратимся к таблице.

Возраст вселенной

Температура, К

Состояние и состав вещества

0,01 с

10 11

нейтроны, протоны, электроны, позитроны в тепловом равновесии. Число n и p одинаково.

0,1 с

3*10 10

Частицы те же, но отношение числа протонов к числу нейтронов 3:5

10 10

электроны и позитроны аннигилируют, p:n =3:1

13,8 с

3*10 9

Начинают образовываться ядра дейтерия D и гелия 4 Не, исчезают электроны и позитроны, есть свободные протоны и нейтроны.

35 мин

3*10 8

Устанавливается количество D и Не по отношению к числу p и n

4 Не:Н + ≈24-25% по массе

7*10 5 лет

3*10 3

Химической энергии достаточно для образования устойчивых нейтральных атомов. Вселенная прозрачна для излучения. Вещество доминирует над излучением.

Сущность первичного нуклеосинтеза сводится к образованию из нуклонов ядер дейтерия, из ядер дейтерия и нуклонов – ядер гелия с массовым числом 3и трития, а из ядер 3 Не, 3 Н и нуклонов – ядер 4 Не.

Другие химические процессы во Вселенной

При высоких температурах (в околозвездных пространствах температура может достигать порядка нескольких тысяч градусов) все химические вещества начинают распадаться на составляющие – радикалы (СН 3 С 2 , СН и т.д.) и атомы (Н, О и т.д.)

Звезды

Звезды различаются по массе, размерам, температуре, светимости.

Наружные слои звезд состоят в основном из водорода, а также из гелия, кислорода и других элементов (С, Р, N, Ar, F, Mg и т.д)

Звезды субкарлики состоят из более тяжелых элементов: кобальт, скандий, титан, марганец, никель и т.д.

В атмосфере звезд гигантов могут встречаться не только атомы химических элементов, но и молекулы тугоплавких оксидов (например, титана и циркония), а также некоторые радикалы: CN, CO, C 2

Химический состав звезд изучают спектроскопическим методом. Таким образом, на Солнце были найдены железо, водород, кальций и натрий. Гелий был впервые найден именно на Солнце, а позднее уже обнаружен в атмосфере планеты Земля. В настоящее время в спектрах Солнца и других небесных тел найдено 72 элемента, все эти элементы обнаружены и на Земле.

Источником энергии звезд являются термоядерные реакции синтеза.

На первом этапе жизни звезды в ее недрах происходит превращение водорода в гелий

4 1 Н → 4 Не

Затем гелий превращается в углерод и кислород

3 4 Не→ 12 С

4 4 Не→ 16 О

На следующем этапе топливом являются углерод и кислород, в альфа процессах образуются элементы неона до железа. Дальнейшие реакции захвата заряженных частиц являются эндотермическими, поэтому нуклеосинтез останавливается. Из-за остановки термоядерных реакций нарушается равновесие железного ядра, начинается гравитационное сжатие, часть энергии которого расходуется на распад ядра железа на α-частицы и нейтроны. Этот процесс называется гравитационным коллапсом и протекает около 1 с. В результате резкого повышения температуры в оболочке звезды происходят термоядерные реакции горения водорода, гелия, углерода и кислорода. Выделяется огромное количество энергии, что приводит к взрыву и разлету вещества звезды. Это явление называется сверхновой. При взрыве сверхновой выделяется энергия, которая придает частицам большое ускорение, потоки нейтронов бомбардируют ядра элементов, которые образовались ранее. В процессе нейтронных захватов с последующим β-излучением происходит синтез ядер элементов тяжелее железа. До этой стадии доходят только наиболее массивные звезды.

Во время коллапса идет образование нейтронов из протонов и электронов по схеме:

1 1 р + -1 0 е → 1 0 n + v

Образуется нейтронная звезда.

Ядро сверхновой может превратиться в пульсар – ядро, которое вращается с периодом в доли секунды и излучает электромагнитное излучение. Ее магнитное поле достигает колоссальных размеров.

Также возможно, что большая часть оболочки преодолевает силу взрыва и падает на ядро. Получая дополнительную массу, нейтронная звезда начинает сжиматься до образования «черной дыры».

Межзвездная среда

Межзвездная среда состоит из газа, пыли, магнитных полей и космических лучей. Поглощение излучения звезд происходит за счет газа и пыли. Пыль межзвездной среды имеет температуру 100-10 К, температура межзвездного газа может колебаться в пределах от 10 до 10 7 К и зависит от плотности и источников нагрева. Межзвездный газ может быть как нейтральным, так и ионизированным (Н 2 0 , Н 0 , Н + , е - , Не 0 ).

Первое химическое соединение в космосе было обнаружено в 1937 году с помощью спектроскопии. Этим соединением был радикал СН, через несколько лет был найден циан CN, а в 1963 году обнаружили гидроксил ОН.

С применением в спектроскопии радиоволн и инфракрасного излучения стало возможным изучение «холодных» участков космического пространства. Сначала были обнаружены неорганические вещества: вода, аммиак, угарный газ, сероводород, а потом органические: формальдегид, муравьиная кислота, уксусная кислота, уксусный альдегид и муравьиный спирт. В 1974 году в космосе нашли этиловый спирт. Потом японскими учеными был обнаружен метиламин CH 3 -NH 2 .

В межзвездном пространстве движутся потоки атомных ядер – космические лучи. Около 92% из этих ядер составляют ядра водорода, 6% - гелия, 1% - ядра более тяжелых элементов. Считается, что космические лучи образуются вследствие взрыва сверхновых.

Пространство между космическими телами заполнено межзвездным газом. Он состоит из атомов, ионов и радикалов, а также в ее состав входит пыль. Доказано существование таких частиц как: CN, CH, OH, CS, H 2 O, CO, COS, SiO, HCN, HCOOH, CH 3 OH и другие.

Столкновение частиц космического излучения, солнечного ветра и межзвездного газа приводит к образованию разнообразных частиц, в том числе и органических.

При столкновении протонов с атомами углерода образуются углеводороды. Из силикатов, карбонатов и различных оксидов образуется гидроксил OH.

Под действием космических лучей в атмосфере Земли образуются такие изотопы, как: углерод с массовым числом 14 14 С, бериллий, массовое число которого равно 10 10 Ве, и хлор с массовым числом 36 36 Cl.

Изотоп углерода с массовым числом 14 накапливается в растениях, кораллах, сталактитах. Изотоп бериллия с массовым числом 10 – в донных отложениях морей и океанов, полярном льду.

Взаимодействие космического излучения с ядрами земных атомов дает информацию о процессах, протекающих в космосе. Этими вопросами занимается современная наука – экспериментальная палеоастрофизика.

К примеру, протоны космических лучей, сталкиваясь с молекулами азота в воздухе, разбивают молекулу на атомы, и протекает ядерная реакция:

7 14 N + 1 1 H→2 2 4 He + 4 7 Be

В результате этой реакции образуется радиоактивный изотоп бериллия.

Протон в момент столкновения с атомами атмосферы выбивает из этих атомов нейтроны, эти нейтроны взаимодействуют с атомами азота, что приводит к образованию изотопа водорода с массовым числом 3 – трития:

7 14 N + 0 1 n→ 1 3 H + 6 12 C

Тритий, подвергаясь β-распаду, выбрасывает электрон:

1 3 H→ -1 0 e + 2 3 He

Так образуется легкий изотоп гелия.

Радиоактивный изотоп углерода образуется в ходе захвата атомами азота электронов:

7 14 N + -1 0 e → 6 14 C

Распространенность химических элементов в космосе

Рассмотрим распространенность химических элементов в галактике Млечный путь. Данные о наличии тех или иных элементов были получены путем спектроскопии. Для наглядного представления используем таблицу.

Заряд ядра

Элемент

Массовая доля в частях на тысячу

Водород

Гелий

Кислород

10,4

Углерод

Неон

1,34

Железо

Азот

0,96

Кремний

0,65

Магний

0,58

Сера

0,44

Для более наглядного представления обратимся к круговой диаграмме.

Как видно на диаграмме, самым распространенным элементом во Вселенной является водород, вторым по распространенности является гелий, а третьим – кислород. Массовые доли других элементов значительно меньше.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Распространенность химических элементов на Земле и в космосе. Образование химических элементов в процессе первичного нуклеосинтеза и в недрах звезд Выполнила Ученица 10 «Б» класса МБОУ СОШ №20 Бовыка Валентина Руководитель: Скрылева З.В.

Химия космоса – наука о химическом составе космических тел, межзвездного пространства, а также о химических процессах, которые протекают в космосе.

Необходимые термины Звезды – светящиеся газовые массивные шары, в недрах которых протекают реакции синтеза химических элементов. Планета – небесные тела, которые вращаются по орбитам вокруг звезд или их остатков. Кометы – космические тела, которые состоят из замороженных газов, пыли. Метеориты – малые космические тела, попадающие на Землю из межпланетного пространства. Метеоры – явления в виде светящегося следа, которое обусловлено попаданием в атмосферу Земли метеорного тела. Межзвездная среда – разряженное вещество, электромагнитное излучение и магнитное поле, заполняющие пространство между звездами. Основные компоненты межзвездного вещества: газ, пыль, космические лучи. Нуклеосинтез – процесс образования ядер химических элементов (тяжелее водорода) в ходе реакций ядерного синтеза.

Меркурий Венера Земля Марс

Юпитер Сатурн Уран Нептун

Луна – спутник Земли, ее сырьевая база.

Метеорит Комета

Первичный нуклеосинтез Возраст вселенной Температура, К Состояние и состав вещества 0,01 с 10 11 нейтроны, протоны, электроны, позитроны в тепловом равновесии. Число n и p одинаково. 0,1 с 3*10 10 Частицы те же, но отношение числа протонов к числу нейтронов 3:5 1с 10 10 электроны и позитроны аннигилируют, p:n =3:1 13,8 с 3*10 9 Начинают образовываться ядра дейтерия D и гелия 4 Не, исчезают электроны и позитроны, есть свободные протоны и нейтроны. 35 мин 3*10 8 Устанавливается количество D и Не по отношению к числу p и n 4 Не:Н + ≈24-25% по массе 7*10 5 лет 3*10 3 Химической энергии достаточно для образования устойчивых нейтральных атомов. Вселенная прозрачна для излучения. Вещество доминирует над излучением.

Основные реакции протекающие в недрах звезд 4 1 Н → 4 Не 3 4 Не→ 12 С 4 4 Не→ 16 О +1 1 р + -1 0 е → 1 0 n + v

Основные реакции протекающие за счет компонентов межзвездной среды 7 14 N + 1 1 H →2 2 4 He + 4 7 Be 7 14 N + 0 1 n→ 1 3 H + 6 12 C 1 3 H → -1 0 e + 2 3 He 7 14 N + -1 0 e → 6 14 C

Распространенность химических элементов в галактике Млечный путь

Список использованных ресурсов http://wallpaperscraft.ru/catalog/space/1920x1080 http://www.cosmos-online.ru/planets-of-the-solar-system.html http://www.grandars.ru/shkola/estestvoznanie/merkuriy.html http://www.grandars.ru/shkola/estestvoznanie/venera.html http://dic.academic.ru/pictures/wiki/files/69/Earth_Eastern_Hemisphere.jpg http://spacetimes.ru/img/foto/planeta-mars_big.jpg http://www.shvedun.ru/images/stat/jp/jp.jpg http://spacegid.com/wp-content/uploads/2012/12/1995-49-f.jpg http://v-kosmose.com/wp-content/uploads/2013/12/4_179_br.jpg http://v-kosmose.com/wp-content/uploads/2013/11/Neptune_Full_br.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/FullMoon2010.jpg/280px-FullMoon2010.jpg http://www.opoccuu.com/tunm01.jpg https://i.ytimg.com/vi/06xW4UegYZ0/maxresdefault.jpg http://terramia.ru/wp-content/uploads/2013/01/Nocturne-Eruption.jpg http://galspace.spb.ru/index61.file/ic.jpg

В книге излагается актуальная проблема современного естествознания - происхождение жизни. Она написана на основе самых современных данных геологии, палеонтологии, геохимии и космохимии, которые опровергают многие традиционные, но устаревшие представления о происхождении и развитии жизни на нашей планете. Глубокая древность жизни и биосферы, соизмеримая с возрастом самой планеты, позволяет автору сделать вывод: происхождение Земли и жизни - единый взаимосвязанный процесс.

Для читателей, интересующихся науками о Земле.

Книга:

<<< Назад
Вперед >>>

Я удивляюсь только, что этот невероятно сложный механизм еще вообще работает. Когда думаешь о Жизни, становится ясно, как жалка и примитивна наша наука. Очевидно, что свойства живого существа предопределяются оплодотворенной клеткой, так и жизнь предопределена существованием атома, и таинство всего сущего заключается в самой низшей ступени,

А. Эйнштейн

Взаимоотношение зародышей жизни и ее предшественников - сложных соединений углерода - представляет собой первостепенную научную задачу. Первые опыты Л. Пастера, поставленные во второй половине XIX в., показали невозможность в современных условиях Земли зарождения жизни - простейших живых организмов. Это в какой-то мере привело к возникновению идей панспермии , согласно которым жизнь на Земле вообще никогда не зарождалась, а была занесена из космического пространства, где она существовала в виде зародышей. Наиболее характерными сторонниками этих представлений выступили Г. Гельмгольц и С. Аррениус, хотя ранее подобные идеи высказывались Ю. Либихом. По С. Аррениусу, частицы живого вещества - споры или бактерии, осевшие на микрочастицах космической пыли, силой светового давления переносятся с одной планеты на другую, сохраняя свою жизнеспособность. При попадании спор на планету с подходящими условиями для жизни они прорастают и дают начало биологической эволюции.

В несколько иных формах эти представления возрождаются в наше время. Например, Ф. Хойл выдвинул идею о возможности существования микроорганизмов в межзвездном пространстве. Согласно его представлениям, облака космической пыли сложены преимущественно бактериями и спорами. Предполагается, что в промежутке времени 4,6-3,8 млрд лет назад на Земле были возможны два события - или зарождение жизни на самой планете, или привнес микроорганизмов из космического пространства. Ф. Хойл и С. Викрамасинг в 1981 г. допустили, что последнее более вероятно. Согласно их расчетам, ежегодно в верхнюю атмосферу Земли поступает 10 18 космических спор, как остаток твердого материала, рассеянного в Солнечной системе. Таким образом, кометы являются переносчиками зародышей жизни, которые образовались ранее в межзвездном пространстве и лишь затем попали в облако Оорта.

Следует отметить крайнюю фантастичность высказанных представлений, которые не согласуются с известными экспериментальными данными. Однако несомненно, что жизнь связана с космосом по атомному составу и в энергетическом отношении. Это можно видеть из табл. 6, в которой даны величины относительного распространения элементов в космосе, в летучей фракции комет, в бактериях и млекопитающих. Обращает на себя внимание большая близость, а в отдельных случаях и тождественность космического вещества и живого вещества Земли. Главные элементы живого вещества - это широко распространенные элементы космоса. При этом Н, С, N, О - типичные биофильные элементы - наиболее широко распространены в природе.

Нетрудно сделать вывод, что живые организмы в первую очередь используют наиболее доступные атомы, которые, кроме того, способны образовывать устойчивые и кратные химические связи. Известно, что углерод может формировать длинные цепи, что приводит в возникновению бесчисленных полимеров. Сера и фосфор также могут образовывать кратные связи. Сера входит в состав белков, а фосфор - в состав нуклеиновых кислот.

В соответствующих условиях наиболее распространенные атомы соединяются друг с другом, образуя молекулы, которые обнаружены в космических облаках методами современной радиоастрономии. Большая часть известных космических молекул относится к органическим, включая наиболее сложные 8- и 11-атомные. Таким образом, в отношении состава космохимия Вселенной создает обширные возможности для различных комбинаций углерода с другими элементами по законам химической связи.

Однако проблема образования молекул в космических условиях относится к труднейшим проблемам космохимии. Собственно в межзвездной среде, даже в наиболее плотных ее участках, элементы находятся в условиях, далеких от термодинамического равновесия. В силу низкой концентрации вещества химические реакции в межзвездном пространстве крайне маловероятны. Поэтому было высказано предположение, что в построении межзвездных молекул принимают участие частицы космической пыли. В наиболее простом случае могут возникать молекулы водорода при контакте его атомов с твердыми частицами, Наиболее распространенные молекулы космоса СО, вероятно, способны зарождаться в условиях звездных атмосфер при достаточной плотности вещества и затем выбрасываться в космическое пространство.

В настоящее время все более четко вырисовывается роль твердой фазы в формировании молекул органических веществ в космическом пространстве. Наиболее вероятные модели этого процесса разработаны Дж. Гринбергом . По мнению ученого, частицы космической пыли имеют сложное строение и состоят из ядра преимущественно силикатного состава, окруженного оболочкой из органических веществ. В оболочке, по-видимому, происходят различные химические процессы, ведущие к усложнению строения первоначального вещества. Структура подобных пылевых частиц после первой стадии аккреции подтверждается путем экспериментального моделирования на смеси воды, метана, аммиака и других простых молекул, облученных ультрафиолетовой радиацией при температуре примерно 10 К. Каждая пылинка ведет свое начало от силикатного ядра, возникшего в атмосфере холодной звезды-гиганта. Вокруг ядра формируется ледяная оболочка. Под действием ультрафиолетового излучения некоторые молекулы оболочки (H 2 O СН 4 , NH 3) диссоциируют с образованием радикалов - реакционноспособных фрагментов молекул. Эти радикалы могут рекомбинировать с образованием других молекул. В результате длительного облучения может появиться более сложная смесь молекул и радикалов (HN 2 HCO, HOCO, СН 3 ОН, СН 3 С и др.). При разрушении пылинок под влиянием космических факторов возникшие на их поверхности соединения образуют молекулярные облака.

Если судить по огромным массам молекулярных облаков, то именно они - главные резервуары органического вещества в космосе. Однако найденные в них органические соединения оказываются относительно простыми и еще далекими от тех молекулярных систем, которые смогли бы обеспечить начало жизни на любом благоприятном планетном теле.

Особого внимания заслуживает нахождение органических веществ в метеоритах. Это очень важно для понимания процессов зарождения высокомолекулярных систем как предшественников жизни. Следует отметить, что метеориты совместно со своими родительскими телами - астероидами принадлежат к Солнечной системе. Далее возраст метеоритов, по данным ядерной геохронологии, 4,6-4,5 млрд лет, что в основном совпадает с возрастом Земли и Луны. Следовательно, метеориты, несомненно, являются свидетелями формирования различных химических соединений, в том числе и органических, на самых ранних этапах развития Солнечной системы.

В метеоритах найдены углеводороды, углеводы, пурины, пиримидины, аминокислоты, т.е. те химические соединения, которые входят в состав живого вещества, составляя его основу. Они встречены в углистых хондритах и астероидах определенных структуры и состава. Больше всего астероидов движется в поясе между Марсом и Юпитером. Если исходить из данных по космохимии комет, то Можно полагать, что область формирования органических соединений охватывала обширное пространство в пределах большей части объема первичной солнечной туманности. Естественно, что в освещении общей проблемы происхождения жизни мы не имеем права игнорировать данные о составе метеоритов. Это обстоятельство в различной степени учитывалось разными авторами гипотез о происхождении жизни. Таким образом, мы вправе сейчас рассматривать известные метеориты в качестве исторических документов - подлинных свидетелей ранней истории Солнечной системы, охватывающей также процессы формирования органических веществ.

Любой метеорит представляет собой твердое тело, состоящее из ряда минеральных фаз. Главными являются силикатная (каменная), металлическая (железоникелевая) и сульфидная (троилитовая). Встречаются также и другие фазы, но они имеют второстепенное значение по своему распространению. В метеоритах встречены различные минералы, число которых превышает 100, но главными породообразующими являются немногие (оливин, пироксен, полевые шпаты, никелистое железо, троилит и др.). Кроме того, в метеоритах встречено 20 минералов, которых нет в земной коре. К ним относятся карбиды, сульфиды и др., образование которых связано с резко восстановительными условиями. Наиболее существенны концентрации углерода, связанные с органическим веществом, в углистых хондритах.

Принципиально важные сведения об органическом веществе в метеоритах изложены в работах Г. П. Вдовыкина, Э. Авдерса, Р, Хаятсу, М. Штудира. Впервые органическое вещество в составе метеоритов выделил знаменитый химик И. Берцелиус при анализе углистого хондрита Алаис в 1834 г. Результаты его анализа были настолько впечатляющими, что сам он считал это вещество биологического происхождения. В течение XIX столетия химическими анализами было обнаружено присутствие в метеоритах твердых углеводородов, сложных соединений органики с серой и фосфором. Наиболее тщательно и обстоятельно изучались углистые хондриты, значительная часть углерода которых находится в виде органических соединений. Общее содержание углерода и некоторых других летучих веществ в углистых хондритах характеризуется следующими величинами (в вес. %):

Отсюда видно, что содержание углерода (а также серы и воды) максимально в углистых хондритах типа C1, a минимально в хондритах С3. Таким образом, в настоящее время не подлежит сомнению то обстоятельство что в родоначальных телах углистых хондритов в результате самих процессов их формирования возникли сложные органические соединения как закономерный итог химической эволюции ранней Солнечной системы.

Элементарный химический состав углистых хондритов за вычетом летучих веществ очень близок к составу обычных хондритов. Главные особенности различных типов углистых хондритов заключаются в следующем.

Тип C1 представлен непрочными черными камнями, при растирании пальцами рассыпающимися в пыль. Мелкозернистая масса составляет в них примерно 95%. В нее вкраплены хондры (микрохондры), состоящие из оливина и магнетита (размером 1-50 мкм). Минеральный состав метеорита этого типа представлен на рис. 9. Углистые хондриты типа C1 наиболее богаты органическими веществами абиогенного происхождения.

Тип С2 - это серовато-черные камни, значительно более плотные, чем C1. В основную мелкозернистую массу, составляющую 60% объема, вкраплены значительно более крупные хондры, чем у типа C1. Наблюдаются срастания первичных микрохондр в единый кристалл.

Тип С3 представляет собой твердые камни темно-серого, зеленовато-серого или серого цвета. Мелкозернистая масса занимает 35%. Хондры довольно крупные и хорошо выражены.

Распространенность многих химических элементов в углистых хондритах типа C1 обнаруживает ряд характерных отношений, сближающих их с веществом Солнца. Иначе говоря, эти углистые хондриты представляют собой застывшее солнечное вещество, лишенное легких газов.

Органические вещества, найденные в метеоритах, перечислены в табл. 7. Как видно, их список довольно внушительный. Большинство из этих соединений в той или иной степени соответствует универсальным звеньям обмена веществ , известных в живых организмах: аминокислот, белковоподобных полимеров, моно- и полинуклеотидов, порфиринов и других соединений. Близость к составу органических комплексов биологического происхождения оказалась настолько большой, что некоторые авторы стали даже допускать, что в прошлом живые организмы встречались непосредственно в самих метеоритах. По данному вопросу возникла оживленная дискуссия в 60-х годах. Однако тщательные исследования органических соединений из метеоритов не подтвердили наличия оптической активности, что свидетельствует о их абиогенном происхождении.

Сравнение органических веществ метеоритного происхождения с продуктами искусственных реакций типа Фишера-Тропша и ископаемыми органическими веществами биологического происхождения показывает их большую близость, в частности в отношении содержания некоторых углеводородов. Например, в метеоритах преобладают углеводороды с 16 атомами в молекуле, что также наблюдается в земных объектах и продуктах лабораторных экспериментов.

Метеориты являются осколками более крупных тел - астероидов, большая часть которых находится в астероидном поясе на расстоянии 2,3-3,3 а. е. от Солнца. За последние 10 лет в результате астрофизических наблюдений астероидов в области видимой части спектра и инфракрасных волн получены данные, имеющие первостепенное значение для установления генетических взаимоотношений между астероидами и метеоритами. Путем сравнения отражательной способности метеоритов и астероидов удалось установить, что почти все известные классы метеоритов имеют своих аналогов среди изученных астероидов.

В зависимости от отражательной способности астероиды подразделяются на две основные большие группы - темные, или С-астероиды, и относительно светлые, или S-астероиды. Для первых характерно низкое альбедо - менее 0,05, для вторых - свыше 0,1. По спектральным отражательным способностям группа С близка к углистым хондритам, a S - к железокаменным метеоритам и обычным хондритам. Последние фотометрические измерения в общем подтверждают единство материала метеоритов и астероидов. Поэтому все минеральные, химические и структурные особенности метеоритов, полученные и изученные в земных лабораториях, могут быть перенесены на астероиды.

В результате проведенных исследований удалось установить, что в разных областях астероидного пояса состав астероидов разный. В пределах Солнечной системы выявлена принципиально важная космохимическая закономерность: состав астероидов зависит от гелиоцентрического расстояния. Во внутренней части пояса астероидов находятся тела, близкие к обычным хондритам, но по мере увеличения расстояния от Солнца, в пределах 2,5-3,3 а. е., их становится меньше, а число астероидов типа углистых хондритов, которые занимают господствующее положение в середине и краевых частях астероидного пояса, увеличивается. В целом, по данным современных наблюдений, в астероидном поясе даже преобладают углисто-хондритовые тела.

Если действительно большинство астероидов имеет состав углистых хондритов, то вполне естественно, что они содержат много органического вещества, которое определяет их темную окраску и низкую отражательную способность. Так, самую низкую отражательную способность имеет астероид Бамберга (альбедо 0,03). Это темный и довольно крупный объект в астероидном поясе, имеющий поперечник около 250 км.

За последнее время большой интерес вызывают кометы. Были высказаны предположения, что они участвовали в возникновении жизни на Земле или во всяком случае могли внести определенный вклад в состав ее ранней атмосферы. Они могли и доставить на поверхность зарождавшейся планеты первые органические молекулы. Установилось мнение, что кометы лучше всего отражают первичные условия в Солнечной системе.

Большинство комет располагается на самой периферии Солнечной системы, в так называемом облаке Оорта. Они имеют чрезвычайно вытянутые орбиты и находятся в сотни и тысячи раз дальше от Солнца, чем Плутон. Из далекой области к Солнцу приближаются долгопериодические кометы. В целом комета представляет собой ком грязного снега. «Снег» в комете сложен обычным водяным льдом с примесью углекислого газа и других замерзших газов неизвестного состава. «Грязь» представляет собой частицы силикатных пород разного размера, вкрапленные в кометный лед. Можно полагать, что в связи с отсутствием химических взаимодействий кометы являются нетронутыми образцами первоначального вещества, из которого образовалась Солнечная система.

По мере приближения к Солнцу летучее вещество комет испаряется и отбрасывается световым давлением, образуя гигантский хвост. Все наблюдаемые кометные явления определяются процессами, связанными с выделением газов и пыли. Входящие в состав кометных хвостов ионы H + , OH - , O - и H 2 O + происходят в основном от молекул воды, хотя, по всей вероятности, присутствуют и другие соединения водорода. Атомы, радикалы, молекулы и ионы представляются в следующем виде: в кометах - C, C 2 , C 3 , CH, CN, CS, CH 3 CN, HCN, NH, NH 2 , O, OH, H 2 , O 2 , Na, S, Si; вблизи Солнца - Ca, CO, Cr, Cu, Fe, V; в хвосте - CH + , CO + , CO 2 + , CN + , N 2 + .

Всюду в кометах обнаруживаются биофильные элементы, в основном С, О, N и Н. В настоящее время о большой долей вероятности установлено, что кометные молекулы близки к тем, которые необходимы для пред-биологической эволюции. Они могут быть представлены молекулами аминокислот, пуринов, пиримидинов. Как отмечает А. Дельсемм , существует несколько групп данных, указывающих на то, что кометная пыль имеет природу хондритовых метеоритов. Во-первых, она состоит преимущественно из силикатов и соединений углерода. Во-вторых, соотношения металлов, испарившихся из комет при прохождении вблизи Солнца, соответствуют типичным для хондритов соотношениям. В-третьих, пылевые частицы космического происхождения, отражающие, вероятно, вещество комет, очень близки к составу материала углистых хондритов. И в самом деле, анализ образцов космической пыли указывает на то, что 80% или более пылевых частиц размером меньше 1 мм состоит из вещества, подобного углистым хондритам. Некоторые ученые сравнили содержание углерода в кометах и углистых хондритах и пришли к заключению, что не менее 10% вещества комет представляет собой органические соединения. Природа обнаруженных в кометах химических соединении указывает на большую вероятность того, что порождающие их молекулы по своей сложности сравнимы по крайней мере с молекулами межзвездного пространства.

Таким образом, все данные по космохимии метеоритов, астероидов и комет свидетельствуют о том, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением. Наиболее интенсивно оно проявилось в пространстве будущего кольца астероидов, но охватывало в разной степени и другие области протопланетной солнечной туманности, включая, вероятно, ту область, из которой возникла Земля. Однако химическая эволюция вещества протосолнечной туманности, дойдя до определенного этапа формирования сложных органических соединений, оказалась как бы замороженной в большинстве тел Солнечной системы, и лишь на Земле она продолжалась, достигнув невероятной сложности в виде живого вещества.

<<< Назад
Вперед >>>