Домой / Химия / Тетраэдр. Задачи на построение сечений в тетраэдре. Объем тетраэдра Тетраэдр химия

Тетраэдр. Задачи на построение сечений в тетраэдре. Объем тетраэдра Тетраэдр химия

Разделы: Математика

План подготовки и проведения занятия:

I. Подготовительный этап:

  1. Повторение известных свойств треугольной пирамиды.
  2. Выдвижение гипотез о возможных, не рассмотренных ранее, особенностях тетраэдра.
  3. Формирование групп для проведения исследований по данным гипотезам.
  4. Распределение заданий для каждой группы (с учётом желания).
  5. Распределение обязанностей по выполнению задания.

II. Основной этап:

  1. Решение гипотезы.
  2. Консультации с учителем.
  3. Оформление работы.

III. Заключительный этап:

  1. Представление и защита гипотезы.

Цели занятия:

  • обобщить и систематизировать знания и умения учащихся; изучить дополнительный теоретический материал по указанной теме; научить применять знания при решении нестандартных задач, видеть в них простые составляющие;
  • формировать навык работы учащихся с дополнительной литературой, совершенствовать умение анализировать, обобщать, находить главное в прочитанном, доказывать новое; развивать коммуникативные навыки учащихся;
  • воспитывать графическую культуру.

Подготовительный этап (1урок):

  1. Сообщение учащегося “Тайны великих пирамид”.
  2. Вступительное слово учителя о разнообразии видов пирамид.
  3. Обсуждение вопросов:
  • По каким признакам можно объединять неправильные треугольные пирамиды
  • Что мы понимаем под ортоцентром треугольника, и что можно называть ортоцентром тетраэдра
  • Существует ли ортоцентр у прямоугольного тетраэдра
  • Какой тетраэдр называют равногранным Какими свойствами он может обладать
  1. В результате рассмотрения разнообразных тетраэдров, обсуждения их свойств уточняются понятия и появляется некоторая структура:

  1. Рассмотрим свойства правильного тетраэдра.(Приложение)

Свойства 1-4 доказываются устно с использованием Слайда1.

Свойство 1: Все ребра равны.

Свойство 2: Все плоские углы равны 60°.

Свойство 3: Суммы плоских углов при любых трех вершинах тетраэдра равны 180°.

Свойство 4: Если тетраэдр правильный, то любая его вершина проектируется в ортоцентр противоположной грани.

Дано:

ABCD – правильный тетраэдр

AH – высота

Доказать:

H –ортоцентр

Доказательство:

1) точка H может совпадать с какой-либо из точек A, B, C. Пусть H ?B, H ?C

2) AH + (ABC) => AH + BH, AH + CH, AH + DH,

3) Рассмотрим ABH, BCH, ADH

AD – общая => ABH, BCH, ADH => BH =CH = DH

AB = AC = AD т. H – является ортоцентром ABC

Что и требовалось доказать.

  1. На первом уроке Свойства 5-9 формулируются как гипотезы, которые требуют доказательства.

Каждая группа получает своё домашнее задание:

Доказать одно из свойств.

Подготовить обоснование с презентацией.

II. Основной этап (в течение недели):

  1. Решение гипотезы.
  2. Консультации с учителем.
  3. Оформление работы.

III. Заключительный этап (1-2 урока):

Представление и защита гипотезы с использование презентаций.

При подготовке материала к заключительному уроку учащиеся приходят к выводу об особенности точки пересечения высот, мы договариваемся называть её “удивительной” точкой.

Свойство 5: Центры описанной и вписанной сфер совпадают.

Дано:

DABC –правильный тетраэдр

О 1 - центр описанной сферы

О - центр вписанной сферы

N – точка касания вписанной сферы с гранью АВС

Доказать: О 1 = О

Доказательство:

Пусть OA = OB =OD = OC – радиусы описанной окружности

Опустим ОN + (ABC)

AON = CON – прямоугольные, по катету и гипотенузе => AN = CN

Опустим OM + (BCD)

COM DOM - прямоугольные, по катету и гипотенузе => CM = DM

Из п. 1 CON COM => ON =OM

ОN + (ABC) => ON,OM – радиусы вписанной окружности.

Теорема доказана.

Для правильного тетраэдра существует возможность его взаимного расположения со сферой – касание с некоторой сферой всеми своими ребрами. Такую сферу иногда называют “полувписанной”.

Свойство 6: Отрезки, соединяющие середины противоположных ребер и перпендикулярные этим ребрам являются радиусами полувписанной сферы.

Дано:

ABCD – правильный тетраэдр;

AL =BL, AK=CK, AS=DS,

BP=CP, BM = DM, CN = DN.

Доказать:

LO = OK = OS = OM = ON =OP

Доказательство.

Тетраэдр ABCD – правильный => AO= BO = CO =DO

Рассмотрим треугольники AOB, AOC, COD, BOD,BOC, AOD.

AO=BO=>?AOB – равнобедренный =>
OL – медиана, высота, биссектриса
AO=CO=>?AOC– равнобедренный =>
ОK– медиана, высота, биссектриса
CO=DO=>?COD– равнобедренный =>
ON– медиана, высота, биссектриса AOB=> AOC= COD=
BO=DO=>?BOD– равнобедренный => BOD= BOC= AOD
OM– медиана, высота, биссектриса
AO=DO=>?AOD– равнобедренный =>
OS– медиана, высота, биссектриса
BO=CO=>?BOC– равнобедренный =>
OP– медиана, высота, биссектриса
AO=BO=CO=DO
AB=AC=AD=BC=BD=CD

3) OL, OK, ON, OM, OS, OP - высоты в равных OL,OK,ON,OM,OS, OP радиусы

равнобедренных треугольниках сферы

Следствие:

В правильном тетраэдре можно провести полувписанную сферу.

Свойство 7: если тетраэдр правильный, то каждые два противоположных ребра тетраэдра взаимно перпендикулярны.

Дано:

DABC – правильный тетраэдр;

H – ортоцентр

Доказать:

Доказательство:

DABC – правильный тетраэдр =>?ADB – равносторонний

(ADB) (EDC) = ED

ED – высота ADB => ED +AB,

AB + CE ,=> AB+ (EDC) => AB + CD.

Аналогично доказывается перпендикулярность других ребер.

Свойство 8: Шесть плоскостей симметрии пересекаются в одной точке. В точке О пересекаются четыре прямые, проведенные через центры описанных около граней окружностей перпендикулярно к плоскостям граней, и точка О является центром описанной сферы.

Дано:

ABCD – правильный тетраэдр

Доказать:

О – центр описанной сферы;

6 плоскостей симметрии пересекаются в точке О;

Доказательство.

CG + BD , т.к. BCD - равносторонний => GO + BD (по теореме о трех GO + BD перпендикулярах)

BG = GD, т.к. AG – медиана ABD

ABD (ABD)=> ? BOD - равнобедренный => BO=DO

ED + AB , т.к. ABD –равносторонний => OE + AD(по теореме о трёх перпендикулярах)

BE = AE, т.к. DE – медиана?ABD

ABD (ABD) =>?AOB – равнобедренный =>BO=AO

(AOB) (ABD) = AB

ON + (ABC) OF + AC (по теореме о трёх

BF + AC, т.к. ABC - равносторонний перпендикулярах)

AF = FC, т.к. BF – медиана?ABC

ABC (ABC) => AOC - равнобедренный => AO = CO

(AOC) ?(ABC) = AC

BO = AO =>AO = BO = CO = DO – радиусы сферы,

AO = CO описанной около тетраэдра ABCD

(ABR) (ACG) = AO

(BCT) (ABR) = BO

(ACG) (BCT) = CO

(ADH) (CED) = DO

AB + (ABR)(ABR)(BCT)(ACG)(ADH)(CED) (BDF)

Следовательно:

Точка О является центром описанной сферы,

6 плоскостей симметрии пересекаются в точке О.

Свойство 9 : Тупой угол между перпендикулярами, проходящими через вершины тетраэдра к ортоцентрам, равен 109°28"

Дано:

ABCD – правильный тетраэдр;

O – центр описанной сферы;

Доказать:

Доказательство:

1)AS – высота

ASB = 90 o OSB прямоугольный

2)(по свойству правильного тетраэдра)

3)AO=BO – радиусы описанной сферы

4) 70°32"

6) AO=BO=CO=DO =>?AOD=?AOC=?AOD=?COD=?BOD=?BOC

  • является точкой пересечения высот правильного тетраэдра
  • является центром вписанной сферы
  • является центром полувписанной сферы
  • является центром описанной сферы
  • является центром тяжести тетраэдра
  • является вершиной четырех равных правильных треугольных пирамид с основаниями – гранями тетраэдра.
  • Заключение.

    (Учитель и учащиеся подводят итоги занятия. С кратким сообщением о тетраэдрах, как структурной единице химических элементов, выступает один из учащихся.)

    Изучены свойства правильного тетраэдра и его “удивительная” точка.

    Выяснено, что форму только такого тетраэдра, имеющего все выше перечисленные свойства, а также “идеальную” точку, могут иметь молекулы силикатов и углеводородов. Или же молекулы могут состоять из нескольких правильных тетраэдров. В настоящее время тетраэдр известен не только как представитель древних цивилизации, математики, но и как основа строения веществ.

    Силикаты – солеобразные вещества, содержащие соединения кремния с кислородом. Их название происходит от латинского слова “силекс” – “кремень”. Основу молекул силикатов составляет атомные радикалы , имеющие форму тетраэдров.

    Силикаты – это и песок, и глина, и кирпич, и стекло, и цемент, и эмаль, и тальк, и асбест, и изумруд, и топаз.

    Силикаты слагают более 75 % земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород.

    Важной особенностью силикатов является способность к взаимному сочетанию (полимеризации) двух или нескольких кремнекислородных тетраэдров через общий атом кислорода.

    Такую же форму молекул имеют предельные углеводороды, но состоят они, в отличии от силикатов, из углерода и водорода. Общая формула молекул

    К углеводородам можно отнести природный газ.

    Предстоит рассмотреть свойства прямоугольного и равногранного тетраэдров.

    Литература.

    • Потапов В.М., Татаринчик С.Н. “Органическая химия”, Москва 1976г.
    • Бабарин В.П. “Тайны великих пирамид”, Санкт-Петербург, 2000г.
    • Шарыгин И. Ф. “Задачи по геометрии”, Москва, 1984г.
    • Большой энциклопедический словарь.
    • “Школьный справочник”, Москва, 2001г.

    Тетраэдр в переводе с греческого означает "четырехгранник". Эта геометрическая фигура обладает четырьмя гранями, четырьмя вершинами и шестью ребрами. Грани представляют собой треугольники. По сути, тетраэдр - это Первые упоминания о многогранниках появились еще задолго до существования Платона.

    Сегодня поговорим об элементах и свойствах тетраэдра, а также узнаем формулы нахождения у этих элементов площади, объема и других параметров.

    Элементы четырехгранника

    Отрезок, выпущенный из любой вершины тетраэдра и опущенный на точку пересечения медиан грани, являющейся противоположной, называется медианой.

    Высота многоугольника представляет собой нормальный отрезок, опущенный из вершины напротив.

    Бимедианой называется отрезок, соединяющий центры скрещивающихся ребер.

    Свойства тетраэдра

    1) Параллельные плоскости, которые проходят через два скрещивающихся ребра, образуют описанный параллелепипед.

    2) Отличительным свойством тетраэдра является то, что медианы и бимедианы фигуры встречаются в одной точке. Важно, что последняя делит медианы в отношении 3:1, а бимедианы - пополам.

    3) Плоскость разделяет тетраэдр на две равные по объему части, если проходит через середину двух скрещивающихся ребер.

    Виды тетраэдра

    Видовое разнообразие фигуры достаточно широко. Тетраэдр может быть:

    • правильным, то есть в основании равносторонний треугольник;
    • равногранным, у которого все грани одинаковы по длине;
    • ортоцентрическим, когда высоты имеют общую точку пересечения;
    • прямоугольным, если плоские углы при вершине нормальные;
    • соразмерным, все би высоты равны;
    • каркасным, если присутствует сфера, которая касается ребер;
    • инцентрическим, то есть отрезки, опущенные из вершины в центр вписанной окружности противоположной грани, имеют общую точку пересечения; эту точку именуют центром тяжести тетраэдра.

    Остановимся подробно на правильном тетраэдре, свойства которого практически не отличаются.

    Исходя из названия, можно понять, что так он называется потому, что грани являют собой правильные треугольники. Все ребра этой фигуры конгруэнтны по длине, а грани - по площади. Правильный тетраэдр - это один из пяти аналогичных многогранников.

    Формулы четырехгранника

    Высота тетраэдра равна произведению корня из 2/3 и длины ребра.

    Объем тетраэдра находится так же, как объем пирамиды: корень квадратный из 2 разделить на 12 и умножить на длину ребра в кубе.

    Остальные формулы для расчета площади и радиусов окружностей представлены выше.

    Тетраэдр – самая простая фигура из многоугольников. Он состоит из четырех граней, каждая из которых представляет собой равносторонний треугольник, при этом каждая из сторон соединяется с другой всего лишь одной гранью. При изучении свойств этой трехмерной геометрической фигуры для наглядности лучше всего сделать модель тетраэдра из бумаги.

    Как склеить тетраэдр из бумаги?

    Для построения простого тетраэдра из бумаги нам понадобится:

    • собственно бумага (плотная, можно использовать картон);
    • транспортир;
    • линейка;
    • ножницы;
    • клей;
    • тетраэдр из бумаги, схема.

    Ход работы

    • если бумага очень плотная, то по местам сгибов следует провести твердым предметом, например, ребром линейки;
    • для того, чтобы получить разноцветный тетраэдр, можно раскрасить грани или выполнить развертку на листах цветной бумаги.

    Как из бумаги сделать тетраэдр без склеивания?

    Предлагаем вашему вниманию мастер-класс, в котором рассказывается, как собрать 6 тетраэдров из бумаги в единый модуль при помощи техники оригами.

    Нам понадобится:

    • 5 пар квадратных листов бумаги различных цветов;
    • ножницы.

    Ход работы

    1. Каждый лист бумаги делим на три равные части, разрезаем и получаем полосы, соотношение сторон в которых 1 к 3. В результате получаем 30 полос, из которых и будем складывать модуль.
    2. Кладем полосу пред собой лицевой стороной вниз, вытянув по горизонтали. Сгибаем пополам, разворачиваем и подгибаем к середине края.
    3. На дальнем правом краю сгибаем угол так, чтобы сделать стрелку, поведя ее на 2-3 см от края.
    4. Аналогичным образом сгибаем левый угол (фото как из бумаги сделать тетраэдр 3).
    5. Перегибаем правый верхний угол маленького треугольничка, который получился в результате предыдущей операции. Таким образом, боковые стороны сложенного края окажутся под одинаковым углом.
    6. Разворачиваем полученную складку.
    7. Разворачиваем левый уголок и по уже имеющимся линиям сгиба заворачиваем угол внутрь как показано на фото.
    8. В правом углу сгибаем верхний край вниз таким образом, чтобы он пересекся со складкой, сделанной во время операции №3.
    9. Внешний край еще раз заворачиваем направо, используя складку, выполненную в результате операции №3.
    10. Предыдущие операции повторяем с другого конца полоски, но так, чтобы маленькие складочки оказались на параллельных концах полоски.
    11. Полученную полоску складываем пополам по длине и даем ей немого раскрыться самопроизвольно. Точный угол раскрытия станет понятен потом, при окончательной сборке модели. Элемент готов, теперь аналогичным образом делаем еще 29.
    12. Звено переворачиваем таким образом, чтобы во время сборки была видна его внешняя сторона. Соединяем два звена, вставив язычок в кармашек, образованный маленьким внутренним углом.
    13. Соединенные звенья должны образовывать угол в 60 ⁰, под которым будут присоединяться и другие звенья (фото как из бумаги сделать тетраэдр 13).
    14. Добавляем третье звено ко второму, а второе соединяем с первым. Получается конец фигуры, на вершине которой соединяются все три ее звена.
    15. Аналогичным образом добавляем еще три звена. Первый тетраэдр готов.
    16. Углы у готовой фигуры могут быть не совсем одинаковыми, поэтому для более точной подгонки следует оставлять открытыми отдельные углы всех последующих тетраэдров.
    17. Между собой тетраэдры следует соединять так, чтобы угол одного проходил сквозь отверстие в другом.
    18. Три соединенных между собой тетраэдра.
    19. Четыре соединенных между собой тетраэдра.
    20. Модуль из пяти тетраэдров готов.

    Если вы справились с тетраэдром, можно продолжить и смастерить

    Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
    Треугольники, из которых состоит тетраэдр, называются его гранями.
    Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

    Тетраэдр имеет 4 грани , 6 ребер и 4 вершины .
    Два ребра, которые не имеют общей вершины, называются противоположными.
    Зачастую для удобства, одну из граней тетраэдра называют основанием , а оставшиеся три грани боковыми гранями.

    Таким образом, тетраэдр – это простейший многогранник, гранями которого являются четыре треугольника.

    Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

    Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
    Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
    Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

    Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

    • S – площадь любой грани,
    • H – высота, опущенная на эту грань

    Правильный тетраэдр – частный вид тетраэдра

    Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
    Свойства правильного тетраэдра:

    • Все грани равны.
    • Все плоские углы правильного тетраэдра равны 60°
    • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
    • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

    Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
    Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
    Высота BM равна BM и равна
    Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
    Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

    , где
    BM=, DM=, BD=a,
    p=1/2 (BM+BD+DM)=
    Подставим эти значения в формулу высоты. Получим


    Вынесем 1/2a. Получим



    Применим формулу разность квадратов

    После небольших преобразований получим


    Объем любого тетраэдра можно рассчитать по формуле
    ,
    где ,

    Подставив эти значения, получим

    Таким образом формула объема для правильного тетраэдра

    где a –ребро тетраэдра

    Вычисление объема тетраэдра, если известны координаты его вершин

    Пусть нам даны координаты вершин тетраэдра

    Из вершины проведем векторы , , .
    Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим