Домой / Физика / Задачи про шары. Теория вероятностей §2.1. Случайное событие. Вероятность

Задачи про шары. Теория вероятностей §2.1. Случайное событие. Вероятность

Пример 1. В первой урне: три красных, один белый шара. Во второй урне: один красный, три белых шара. Наугад бросают монету: если герб – выбирают из первой урны, в противном случае– из второй.
Решение:
а) вероятность того, что достали красный шар
A – достали красный шар
P 1 – выпал герб, P 2 - иначе

b) Выбран красный шар. Найти вероятность того, что он взят из первой урны, из второй урны.
B 1 – из первой урны, B 2 – из второй урны
,

Пример 2. В ящике 4 шара. Могут быть: только белые, только черные или белые и черные. (Состав неизвестен).
Решение:
A – вероятность появления белого шара
а) Все белые:
(вероятность того, что попался один из трех вариантов, где есть белые)
(вероятность появления белого шара, где все белые)

б) Вытащили, где все черные



в) вытащили вариант, где все белые или/и черные

- хотя бы один из них белый

P а +P б +P в =

Пример 3 . В урне 5 белых и 4 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара белые.
Решение:
5 белых, 4 черных шара
P(A 1) – вынули белый шар

P(A 2) – вероятность того, что второй шар тоже белый

P(A) – подряд выбрали белые шары

Пример 3а . В пачке 2 фальшивых и 8 настоящих денежных купюр. Из пачки вытянули 2 купюры подряд. Найти вероятность что обе они фальшивые.
Решение:
P(2) = 2/10*1/9 = 1/45 = 0.022

Пример 4. Имеется 10 урн. В 9 урнах по 2 черных и 2 белых шара. В 1 урне 5 белых и 1 черный. Из урны, взятой наугад, вынули шар.
Решение:
P(A) - ? белый шар взят из урны, где 5 белых
B – вероятность того, что вынули из урны, где 5 белых
, - вынули из других
C 1 – вероятность появления белого шара в 9 ур.

С 2 – вероятность появления белого шара, где их 5

P(A 0)= P(B 1) P(C 1)+P(B 2) P(C 2)

Пример 5. 20 цилиндрических валиков и 15 конусообразных. Сборщик берет 1 валик, а затем еще один.
Решение:
а) оба валика цилиндрические
P(Ц 1)=; P(Ц 2)=
Ц 1 – первый цилиндр, Ц 2 – второй цилиндр
P(A)=P(Ц 1)P(Ц 2) =
б) Хотя бы один цилиндр
K 1 – первый конусообр.
K 2 - второй конусообр.
P(B)=P(Ц 1)P(K 2)+P(Ц 2)P(K 1)+P(Ц 1)P(Ц 2)
;

с) первый цилиндр, а второй нет
P(C)=P(Ц 1)P(K 2)

д) Ни один цилиндр.
P(D)=P(K 1)P(K 2)

е) Ровно 1 цилиндр
P(E)=P(Ц 1)P(K 2)+P(K 1)P(K 2)

Пример 6. В ящике 10 стандартных деталей и 5 бракованных.
Наугад извлекают три детали
а) Из них одна бракованная
P n (K)=C n k ·p k ·q n-k ,
P – вероятность бракованных изделий

q – вероятность стандартных деталей

n=3, три детали


б) две из трех деталей бракованных P(2)
в) хотя бы одна стандартная
P(0)-нет бракованных

P=P(0)+ P(1)+ P(2) - вероятность того, что хотя бы одна деталь окажется стандартной

Пример 7 . В 1-й урне по 3 белых и черных шара, а во 2-й - 3 белых и 4 черных. Из 1-й урны во 2-ю не глядя перекладывают 2 шара, а затем из 2-й вытягивают 2 шара. Какова вероятность, что они разных цветов?
Решение:
При перекладывании шаров из первой урны возможны следующие варианты:
а) вынули за подряд 2 белых шара
P ББ 1 =
На втором шаге всегда будет на один шар меньше, поскольку на первом шаге уже вынули один шар.
б) вынули один белый и один черный шар
Ситуация, когда первым вынули белый шар, а потом черный
P БЧ =
Ситуация, когда первым вынули черный шар, а потом белый
P ЧБ =
Итого: P БЧ 1 =
в) вынули за подряд 2 черных шара
P ЧЧ 1 =
Поскольку из первой урны переложили во вторую урну 2 шара, то общей количество шаров во второй урне будет 9 (7 + 2). Соответственно, будем искать все возможные варианты:
а) из второй урны вынули сначала белый, потом черный шар

P БЧ 2 P ББ 1 - означает вероятность того, что вынули сначала белый, потом черный шар при условии, что из первой урны за подряд вынули 2 белых шара. Именно поэтому количество белых шаров в этом случае равно 5 (3+2).
P БЧ 2 P БЧ 1 - означает вероятность того, что вынули сначала белый, потом черный шар при условии, что из первой урны вынули белый и черный шары. Именно поэтому количество белых шаров в этом случае равно 4 (3+1), а черных шаров равно пяти (4+1).
P БЧ 2 P ЧЧ 1 - означает вероятность того, что вынули сначала белый, потом черный шар при условии, что из первой урны вынули за подряд оба черных шара. Именно поэтому количество черных шаров в этом случае равно 6 (4+2).

Вероятность того, что извлеченные 2 шара окажутся разных цветов, равна:

Ответ: P = 0.54

Пример 7а . Из 1-ой урны, содержащей 5 белых и 3 черных шара наугад переложили 2 шара во 2-ую урну, содержащую 2 белых и 6 черных шаров. Затем из 2-ой урны наугад извлекли 1 шар.
1) Какова вероятность того, что извлеченный из 2-ой урны шар оказался белым?
2) Шар извлеченный из 2-ой урны оказался белым. Вычислите вероятность того, что из 1-ой урны во 2-ую были переложены шары разного цвета.
Решение.
1) Событие А - извлеченный из 2-ой урны шар оказался белым. Рассмотрим следующие варианты наступления этого события.
а) Из первой урны во вторую положили два белых шара: P1(бб) = 5/8*4/7 = 20/56.
Всего во второй урне 4 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(4) = 20/56*(2+2)/(6+2) = 80/448
б) Из первой урны во вторую положили белый и черный шары: P1(бч) = 5/8*3/7+3/8*5/7 = 30/56.
Всего во второй урне 3 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(3) = 30/56*(2+1)/(6+2) = 90/448
в) Из первой урны во вторую положили два черных шара: P1(чч) = 3/8*2/7 = 6/56.
Всего во второй урне 2 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(2) = 6/56*2/(6+2) = 12/448
Тогда вероятность того, что извлеченный из 2-ой урны шар оказался белым равна:
P(A) = 80/448 + 90/448 + 12/448 = 13/32

2) Шар извлеченный из 2-ой урны оказался белым, т.е. полная вероятность равна P(A)=13/32.
Вероятность того, что во вторую урну были переложены шары разного цвета (черный и белый) и был выбран белый: P2(3) = 30/56*(2+1)/(6+2) = 90/448
P = P2(3)/ P(A) = 90/448 / 13/32 = 45/91

Пример 7б . В первой урне 8 белых и 3 черных шара, во второй 5 белых и 3 черных. Из первой наудачу выбирают один шар, а из второй два шара. После этого из выбранных трех шаров наудачу берут один шар. Этот последний шар оказался черным. Найти вероятность того, что из первой урны был выбран белый шар.
Решение.
Рассмотрим все варианты события А – из трех шаров, вынутый шар оказался черным. Каким образом могло произойти, что среди трех шаров оказался черный?
а) Из первой урны вынули черный шар, из второй урны вынули два белых шара.
P1 = (3/11)(5/8*4/7) = 15/154
б) Из первой урны вынули черный шар, из второй урны вынули два черных шара.
P2 = (3/11)(3/8*2/7) = 9/308
в) Из первой урны вынули черный шар, из второй урны вынули один белый и один черный шара.
P3 = (3/11)(3/8*5/7+5/8*3/7) = 45/308
г) Из первой урны вынули белый шар, из второй урны вынули два черных шара.
P4 = (8/11)(3/8*2/7) = 6/77
д) Из первой урны вынули белый шар, из второй урны вынули один белый и один черный шара.
P5 = (8/11)(3/8*5/7+5/8*3/7) = 30/77
Полная вероятность равна: P = P1+P2+ P3+P4+P5 = 15/154+9/308+45/308+6/77+30/77 = 57/77
Вероятность того, что из белой урны был выбран белый шар, равна:
Pб(1) = P4 + P5 = 6/77+30/77 = 36/77
Тогда вероятность того, что из первой урны был выбран белый шар при условии, что из трех шаров был выбран черный, равна:
Pч = Pб(1)/P = 36/77 / 57/77 = 36/57

Пример 7в . В первой урне 12 белых и 16 черных шаров, во второй 8 белых и 10 черных. Одновременно из 1-ой и 2-ой урны вытаскивают по шару, перемешивают и возвращают по одному в каждую урну. Затем из каждой урны вытаскивают по шару. Они оказались одного цвета. Определить вероятность того, что в 1-ой урне осталось столько же белых шаров, сколько было в начале.

Решение.
Событие А - одновременно из 1-ой и 2-ой урны вытаскивают по шару.
Вероятность вытащить белый шар из первой урны: P1(Б) = 12/(12+16) = 12/28 = 3/7
Вероятность вытащить черный шар из первой урны: P1(Ч) = 16/(12+16) = 16/28 = 4/7
Вероятность вытащить белый шар из второй урны: P2(Б) = 8/18 = 4/9
Вероятность вытащить черный шар из второй урны: P2(Ч) = 10/18 = 5/9

Событие А произошло. Событие В - из каждой урны вытаскивают по шару. После перемешивания, вероятность возвращения шара в урну белого или черного шара равна ½.
Рассмотрим варианты события В - они оказались одного цвета.

Для первой урны
1) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ББ/А=Б) = ½ * 12/28 * 3/7 = 9/98
2) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ББ/А=Ч) = ½ * 13/28 * 4/7 = 13/98
3) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(БЧ/А=Б) = ½ * 16/28 * 3/7 = 6/49
4) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(БЧ/А=Ч) = ½ * 15/28 * 4/7 = 15/98
5) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ЧБ/А=Б) = ½ * 11/28 * 3/7 = 33/392
6) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ЧБ/А=Ч) = ½ * 12/28 * 4/7 = 6/49
7) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(ЧЧ/А=Б) = ½ * 17/28 * 3/7 = 51/392
8) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(ЧЧ/А=Ч) = ½ * 16/28 * 4/7 = 8/49

Для второй урны
1) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ББ/А=Б) = ½ * 8/18 * 3/7 = 2/21
2) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ББ/А=Ч) = ½ * 9/18 * 4/7 = 1/7
3) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(БЧ/А=Б) = ½ * 10/18 * 3/7 = 5/42
4) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(БЧ/А=Ч) = ½ * 9/18 * 4/7 = 1/7
5) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ЧБ/А=Б) = ½ * 7/18 * 3/7 = 1/12
6) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ЧБ/А=Ч) = ½ * 8/18 * 4/7 = 8/63
7) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(ЧЧ/А=Б) = ½ * 11/18 * 3/7 = 11/84
8) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(ЧЧ/А=Ч) = ½ * 10/18 * 4/7 = 10/63

Шары оказались одного цвета:
а) белые
P1(Б) = P1(ББ/А=Б) + P1(ББ/А=Ч) + P1(ЧБ/А=Б) + P1(ЧБ/А=Ч) = 9/98 + 13/98 + 33/392 + 6/49 = 169/392
P2(Б) = P1(ББ/А=Б) + P1(ББ/А=Ч) + P1(ЧБ/А=Б) + P1(ЧБ/А=Ч) = 2/21+1/7+1/12+8/63 = 113/252
б) черный
P1(Ч) = P1(БЧ/А=Б) + P1(БЧ/А=Ч) + P1(ЧЧ/А=Б) + P1(ЧЧ/А=Ч) = 6/49 + 15/98 + 51/392 + 8/49 = 223/392
P2(Ч) = P1(БЧ/А=Б) + P1(БЧ/А=Ч) + P1(ЧЧ/А=Б) + P1(ЧЧ/А=Ч) =5/42+1/7+11/84+10/63 = 139/252

P = P1(Б)* P2(Б) + P1(Ч)* P2(Ч) = 169/392*113/252 + 223/392*139/252 = 5/42

Пример 7г . В первом ящике 5 белых и 4 синих шарика, во втором 3 и 1, а в третьем - 4 и 5 соответственно. Наугад выбран ящик и из него вытащенный шарик, оказался синий. Какова вероятность того, что этот шарик со второго ящика?

Решение.
A - событие извлечения синего шарика. Рассмотрим все варианты исхода такого события.
H1 - вытащенный шарик из первого ящика,
H2 - вытащенный шарик из второго ящика,
H3 - вытащенный шарик из третьего ящика.
P(H1) = P(H2) = P(H3) = 1/3
Согласно условию задачи условные вероятности события А равны:
P(A|H1) = 4/(5+4) = 4/9
P(A|H2) = 1/(3+1) = 1/4
P(A|H3) = 5/(4+5) = 5/9
P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3) = 1/3*4/9 + 1/3*1/4 + 1/3*5/9 = 5/12
Вероятность того, что этот шарик со второго ящика равна:
P2 = P(H2)*P(A|H2) / P(A) = 1/3*1/4 / 5/12 = 1/5 = 0.2

Пример 8 . В пяти ящиках с 30 шарами в каждом содержится по 5 красных шаров (это ящик состава H1), в шести других ящиках с 20 шарами в каждом - по 4 красных шара (это ящик состава H2). Найти вероятность того, что наугад взятый красный шар содержится в одном из первых пяти ящиков.
Решение: Задача на применение формулы полной вероятности.

Вероятность того, что любой взятый шар содержится в одном из первых пяти ящиков:
P(H 1) = 5/11
Вероятность того, что любой взятый шар содержится в одном из шести ящиков:
P(H 2) = 6/11
Событие произошло – вытащили красный шар. Следовательно, это могло произойти в двух случаях:
а) вытащили из первых пяти ящиков.
P 5 = 5 красных шаров * 5 ящиков / (30 шаров * 5 ящиков) = 1/6
P(P 5 /H 1) = 1/6 * 5/11 = 5/66
б) вытащили из шести других ящиков.
P 6 = 4 красных шара * 6 ящиков / (20 шаров * 6 ящика) = 1/5
P(P 6 /H 2) = 1/5 * 6/11 = 6/55
Итого: P(P 5 /H 1) + P(P 6 /H 2) = 5/66 + 6/55 = 61/330
Следовательно, вероятность того, что наугад взятый красный шар содержится в одном из первых пяти ящиков равна:
P к.ш. (H1) = P(P 5 /H 1) / (P(P 5 /H 1) + P(P 6 /H 2)) = 5/66 / 61/330 = 25/61

Пример 9 . В урне находятся 2 белых, 3 черных и 4 красных шаров. Наудачу вынимают три шара. Какова вероятность, что хотя бы два шара будут одного цвета?
Решение. Всего возможны три варианта исхода событий:
а) среди трех вытащенных шаров оказалось хотя бы два белых.
P б (2) = P 2б
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 3 шара из 9:

Найдем вероятность того, что среди выбранных 3 шаров 2 белых.

Количество вариантов выбора из 2 белых шаров:

Количество вариантов выбора из 7 других шаров третий шар:

б) среди трех вытащенных шаров оказалось хотя бы два черных (т.е. или 2 черных или 3 черных).
Найдем вероятность того, что среди выбранных 3 шаров 2 черных.

Количество вариантов выбора из 3 черных шаров:

Количество вариантов выбора из 6 других шаров одного шара:


P 2ч = 0.214
Найдем вероятность того, что все выбранные шары черные.

P ч (2) = 0.214+0.0119 = 0.2259

в) среди трех вытащенных шаров оказалось хотя бы два красных (т.е. или 2 красных или 3 красных).
Найдем вероятность того, что среди выбранных 3 шаров 2 красных.

Количество вариантов выбора из 4 черных шаров:

Количество вариантов выбора из 5 белых шаров остальные 1 белых:


Найдем вероятность того, что все выбранные шары красные.

P к (2) = 0.357 + 0.0476 = 0.4046
Тогда вероятность, что хотя бы два шара будут одного цвета равна: P = P б (2) + P ч (2) + P к (2) = 0.0833 + 0.2259 + 0.4046 = 0.7138

Пример 10 . В первой урне содержится 10 шаров, из них 7 белых; во второй урне 20 шаров, из них 5 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.
Решение. Вероятность того, что из первой урны извлекли белый шар, равна P(б)1 = 7/10. Соответственно, вероятность извлечения черного шара равна P(ч)1 = 3/10.
Вероятность того, что из второй урны извлекли белый шар, равна P(б)2 = 5/20 = 1/4. Соответственно, вероятность извлечения черного шара равна P(ч)2 = 15/20 = 3/4.
Событие А - из двух шаров взят белый шар
Рассмотрим варианты исхода события А.

  1. из первой урны вытащили белый шар, из второй урны вытащили белый шар. Затем из этих двух шаров вытащили белый шар. P1 = 7/10*1/4 = 7/40
  2. из первой урны вытащили белый шар, из второй урны вытащили черный шар. Затем из этих двух шаров вытащили белый шар. P2 = 7/10*3/4 = 21/40
  3. из первой урны вытащили черный шар, из второй урны вытащили белый шар. Затем из этих двух шаров вытащили белый шар. P3 = 3/10*1/4 = 3/40
Таким образом, вероятность можно найти как сумму вышеуказанных вероятностей.
P = P1 + P2 + P3 = 7/40 + 21/40 + 3/40 = 31/40

Пример 11 . В ящике n теннисных мячей. Из них игранных m . Для первой игры наудачу взяли два мяча и после игры их положили обратно. Для второй игры также наудачу взяли два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?
Решение. Рассмотрим событие А – игра во второй раз проводилась новыми мячами. Посмотрим какие события могут привести к этому.
Обозначим через g = n-m, количество новых мячей до вытаскивания.
а) для первой игры вытащили два новых мяча.
P1 = g/n*(g-1)/(n-1) = g(g-1)/(n(n-1))
б) для первой игры вытащили один новый мяч и один уже игранный.
P2 = g/n*m/(n-1) + m/n*g/(n-1) = 2mg/(n(n-1))
в) для первой игры вытащили два игранных мяча.
P3 = m/n*(m-1)/(n-1) = m(m-1)/(n(n-1))

Рассмотрим события второй игры.
а) Вытащили два новых мяча, при условии P1: поскольку ранее для первой игры уже вытащили новые мячи, то для второй игры их количество уменьшилось на 2, g-2.
P(A/P1) = (g-2)/n*(g-2-1)/(n-1)*P1 = (g-2)/n*(g-2-1)/(n-1)*g(g-1)/(n(n-1))
б) Вытащили два новых мяча, при условии P2: поскольку ранее для первой игры уже вытащили один новый мяч, то для второй игры их количество уменьшилось на 1, g-1.
P(A/P2) =(g-1)/n*(g-2)/(n-1)*P2 = (g-1)/n*(g-2)/(n-1)*2mg/(n(n-1))
в) Вытащили два новых мяча, при условии P3: поскольку ранее для первой игры не использовали новых мячей, то для второй игры их количество не изменилось g.
P(A/P3) = g/n*(g-1)/(n-1)*P3 = g/n*(g-1)/(n-1)*m(m-1)/(n(n-1))

Полная вероятность P(A) = P(A/P1) + P(A/P2) + P(A/P3) = (g-2)/n*(g-2-1)/(n-1)*g(g-1)/(n(n-1)) + (g-1)/n*(g-2)/(n-1)*2mg/(n(n-1)) + g/n*(g-1)/(n-1)*m(m-1)/(n(n-1)) = (n-2)(n-3)(n-m-1)(n-m)/((n-1)^2*n^2)
Ответ: P(A)=(n-2)(n-3)(n-m-1)(n-m)/((n-1)^2*n^2)

Пример 12 . В первом, втором и третьем ящиках находится по 2 белых и 3 черных шара, в четвертом и пятом по 1 белому и 1 черному шару. Случайно выбирается ящик и из него извлекается шар. Какова условная вероятность, что выбран четвертый или пятый ящик, если извлеченный шар - белый?
Решение .
Вероятность выбора каждого ящика равна P(H) = 1/5.
Рассмотрим условные вероятности события А - извлечения белого шара.
P(A|H=1) = 2/5
P(A|H=2) = 2/5
P(A|H=3) = 2/5
P(A|H=4) = ½
P(A|H=5) = ½
Полная вероятность извлечения белого шара:
P(A) = 2/5*1/5 + 2/5*1/5 +2/5*1/5 +1/2*1/5 +1/2*1/5 = 0.44
Условная вероятность, что выбран четвертый ящик
P(H=4|A) = 1/2*1/5 / 0.44 = 0.2273
Условная вероятность, что выбран пятый ящик
P(H=5|A) = 1/2*1/5 / 0.44 = 0.2273
Итого, условная вероятность, что выбран четвертый или пятый ящик равна
P(H=4, H=5|A) = 0.2273 + 0.2273 = 0.4546

Пример 13 . В урне было 7 белых и 4 красных шара. Затем в урну положили ещё один шар белого или красного или черного цвета и после перемешивания вынули один шар. Он оказался красным. Какова вероятность, что был положен а) красный шар? б) черный шар?
Решение.
а) красный шар
Событие A - вытащили красный шар. Событие H - положили красный шар. Вероятность, того в урну был положен красный шар P(H=K) = 1 / 3
Тогда P(A|H=K)= 1 / 3 * 5 / 12 = 5 / 36 = 0.139
б) черный шар
Событие A - вытащили красный шар. Событие H - положили черный шар.
Вероятность, того в урну был положен черный шар P(H=Ч) = 1 / 3
Тогда P(A|H=Ч)= 1 / 3 * 4 / 12 = 1 / 9 = 0.111

Пример 14 . Имеются две урны с шарами. В одной 10 красных и 5 синих шаров, во второй 5 красных и 7 синих шаров. Какова вероятность того, что из первой урны наудачу будет вынут красный шар, а из второй синий?
Решение. Пусть событие A1 - из первой урны вынут красный шар; A2 - из второй урны вынут синий шар:
,
События A1 и A2 независимые. Вероятность совместного появления событий A1 и A2 равна

Пример 15 . Имеется колода карт (36 штук). Вынимаются наудачу две карты подряд. Какова вероятность того, что обе вынутые карты будут красной масти?
Решение. Пусть событие A 1 - первая вынутая карта красной масти. Событие A 2 - вторая вынутая карта красной масти. B - обе вынутые карты красной масти. Так как должны произойти и событие A 1 , и событие A 2 , то B = A 1 · A 2 . События A 1 и A 2 зависимые, следовательно, P(B) :
,
Отсюда

Пример 16 . В двух урнах находятся шары, отличающиеся только цветом, причем в первой урне 5 белых шаров, 11 черных и 8 красных, а во второй соответственно 10, 8, 6 шаров. Из обеих урн наудачу извлекается по одному шару. Какова вероятность, что оба шара одного цвета?
Решение. Пусть индекс 1 означает белый цвет, индекс 2 - черный цвет; 3 - красный цвет. Пусть событие A i - из первой урны извлекли шар i-го цвета; событие B j - из второй урны извлекли шар j -го цвета; событие A - оба шара одного цвета.
A = A 1 · B 1 + A 2 · B 2 + A 3 · B 3 . События A i и B j независимые, а A i · B i и A j · B j несовместные при i ≠ j . Следовательно,
P(A)=P(A 1)·P(B 1)+P(A 2)·P(B 2)+P(A 3)·P(B 3) =

Пример 17 . Из урны с 3-мя белыми и 2-мя черными шары вытаскиваются по одному до появления черного. Найдите вероятность того, что из урны будет вытащено 3 шара? 5 шаров?
Решение .
1) вероятность того, что из урны будет вытащено 3 шара (т.е. третий шар будет черным, а первые два - белыми).
P=3/5*2/4*2/3=1/5
2) вероятность того, что из урны будет вытащено 5 шаров
такая ситуация не возможна, т.к. всего 3 белых шара.
P = 0

Индивидуальные задания по математике


В урне 6 белых шаров, 11 – черных. Одновременно наугад вынимают два шара. Найти вероятность того, что оба шара будут:

1) Вероятность того, что один из вытащенных шаров будет белым равна количеству шансов вытащить белый шар из всей суммы шаров, находящихся в урне. Этих шансов ровно столько сколько белых шаров в урне, а сумма всех шансов равна сумме белых и черных шаров.

Вероятность того, что второй из вытащенных шаров также будет белым равна

Так как один из белых шаров уже вытащен.

Таким образом, вероятность того, что оба вытащенных из урны шара будут белыми равна произведению этих вероятностей, так как эти возможности независимы:

.


3) Вероятность того, что оба вытащенных шара будут разных цветов это – вероятность того, что первый шар будет белым, а второй черными или того, что первый шар будет черным, а второй – белым. Она равна сумме соответствующих вероятностей.

Ответ: 1) 2) 3) .

В первой урне 6 белых шаров, 11 – черных, во второй – 5 белых и 2 – черных. Из каждой из урн наугад вынимают по шару. Найти вероятность того, что оба шара будут:

1) белыми, 2) одного цвета, 3) разных цветов.

1) Вероятность того, что оба шара будут белыми равна произведению вероятности того, что шар вытащенный из первой урны будет белым на вероятность того, что шар вытащенный из второй урны также окажется белым:


2) Вероятность того, что оба вытащенных шара будут одного цвета это – вероятность того, что оба шара будут либо белыми, либо черными. Она равна сумме вероятностей - вытащить два белых шара или два черных шара:

3) Вероятность того, что шар, вытащенный из первой урны будет белым, а шар, вытащенный из второй урны – черным, или наоборот – первый шар будет черным, а второй – белым, равна сумме соответствующих вероятностей:

Ответ: 1) 2) 3) .

Среди 24 лотерейных билетов – 11 выигрышных. Найти вероятность того, что по крайней мере один из 2-х купленных билетов будет выигрышным.

Вероятность того, что хотя бы один из 24-х купленных билетов окажется выигрышным, равна разности между единицей и вероятностью того, что ни один из купленных билетов не будет выигрышным. А вероятность того, что ни один из купленных билетов не будет выигрышным равна произведению вероятности того, что первый из билетов не будет выигрышным на вероятность того, что и второй билет не будет выигрышным:

Отсюда, вероятность того, что хотя бы один из 24-х купленных билетов окажется выигрышным:

Ответ:

В ящике 6 деталей первого сорта, 5 – второго и 2 – третьего. Наугад берутся две детали. Какова вероятность того, что они обе будут одного сорта?

Искомая вероятность это – вероятность того, что обе детали будут или 1-го или 2-го или 3-го сорта и равна сумме соответствующих вероятностей:

Вероятность, что обе взятые детали окажутся первого сорта:

Вероятность, что обе взятые детали окажутся второго сорта:


Вероятность, что обе взятые детали окажутся третьего сорта:

Отсюда вероятность вытащить 2 детали одного сорта равна:

В течение часа 0 ≤ t ≤ 1 (t – время в часах) на остановку прибывает один и только один автобус.

Автобус может прибыть в любой момент t, где 0 ≤ t ≤ 1 (где t – время в часах) или, что то же самое, 0 ≤ t ≤ 60 (где t – время в минутах).

Пассажир прибывает в момент t = 0 и ожидает не более 28 минут.

Возможности прибытия автобуса на станцию в течение этого времени или в течение остальных 32 минут равновероятны, поэтому вероятность того, что пассажиру, прибывшему на эту остановку в момент времени t = 0, придётся ожидать автобус не более 28 минут равна .

Ответ:


Вероятность попадания первым стрелком в мишень равна 0,2 , вторым – 0,2 и третьим – 0,2. Все три стрелка одновременно произвели выстрел. Найти вероятность того, что:

1) только один стрелок попадёт в мишень;

2) два стрелка попадут в мишень;

3) хотя бы один попадет в мишень.

1) Вероятность того, что только один стрелок попадёт в мишень равна вероятности попадания в мишень первым стрелком и промаха вторым и третьим или попадания в мишень вторым стрелком и промаха первым и третьим или попадания в мишень третьим стрелком и промаха первым и вторым, а значит равна сумме соответствующих вероятностей.

Вероятность того, что первый стрелок попадёт в мишень, а второй и третий – промахнутся равна произведению этих вероятностей:

Аналогичные вероятности попадания вторым стрелком в мишень и промаха первым и третьим, а также попадания третьим и промаха первым и вторым:

Отсюда, искомая вероятность:


2) Вероятность того, что два стрелка попадут в мишень равна вероятности попадания в мишень первым и вторым стрелком и промаха третьим или попадания в мишень первым и третьим стрелком и промаха вторым или попадания в мишень вторым и третьим стрелком и промаха первым, а значит равна сумме соответствующих вероятностей.

Вероятность того, что первый и второй стрелки попадут в мишень, а третий – промахнётся равна произведению этих вероятностей:

Аналогичные вероятности попадания первым и третьим стрелком в мишень и промаха вторым, а также попадания вторым и третьим и промаха первым:

Отсюда, искомая вероятность:

3) Вероятность того, что хотя бы один стрелок попадет в мишень равна разности между единицей и вероятностью того, что ни один стрелок не попадёт в мишень. Вероятность того, что ни один стрелок не попадёт в мишень равна произведению этих вероятностей:


Ответ: 1) , 2) , 3) .

Студент знает 11 вопросов из 24 вопросов программы. Каждый экзаменационный билет содержит три вопроса. Найти вероятность того, что: 1) студент знает все три вопроса; 2) только два вопроса; 3) только один вопрос экзаменационного билета.

1) Вероятность того, что студент знает все три вопроса билета равна произведению вероятностей знания каждого из них. Так как все три вопроса разные и не повторяются, то:

.

2) Вероятность того, что студент знает только два вопроса билета равна вероятности того, что он знает первый и второй вопрос, а третий – не знает, или, что он знает первый и третий вопрос, а второй – не знает, или, что он знает второй и третий вопрос, а первый – не знает. То есть, эта вероятность равна сумме всех этих вероятностей.

Первое слагаемое этой суммы:


Второе слагаемое этой суммы:

И третье слагаемое этой суммы:

Отсюда искомая вероятность:

3) Вероятность того, что студент знает только один вопрос из трёх равна разности единицы и вероятности того что он не знает ни одного вопроса:

Ответ: 1) , 2) , 3) .

В первой урне 6 белых шаров и 11 – черных, во второй – 5 белых и 2 – черных. Из первой урны переложили во вторую один шар, затем из второй урны извлекли один шар. Найти вероятность того, что взятый из второй урны шар оказался: 1) белым, 2) чёрным.

1) Вероятность того, что наугад взятый из первой урны шар и переложенный во вторую окажется белым:

.

Если шар, переложенный из первой урны во вторую, оказался белым, то белых шаров во второй урне станет шесть. Тогда, вероятность того, что взятый из второй урны шар окажется белым:

Вероятность того, что наугад взятый из первой урны шар и переложенный во вторую окажется чёрным:

.

Если шар, переложенный из первой урны во вторую, оказался чёрным, то чёрных шаров во второй урне станет три.

Тогда, вероятность того, что взятый из второй урны шар окажется чёрным:

.

А вероятность обоих этих событий равна произведению этих вероятностей:

Ответ: 1) , 2) .

В первой урне 6 белых и 11 – черных шаров, во второй – 5 белых и 2 – черных, в третьей 7 белых шаров. Произвольно выбирают урну и из неё наугад вынимают шар. Найти вероятность того, что вынутый шар оказался:

1) белым, 2) чёрным.

1) Вероятность выбора одной из трёх урн равна 1 / 3 .

Вероятность вынуть белый шар из первой урны:

Значит, вероятность выбрать первую урну и вытащить из неё белый шар:


.

Аналогично, вероятность выбрать вторую урну и вытащить из неё белый шар:

.

Вероятность выбрать третью урну и вытащить из неё белый шар:

,

Вероятность вытащить белый шар из наугад выбранной урны равна сумме этих вероятностей:

Вероятность выбрать первую урну и вытащить из неё чёрный шар:

.

Аналогично, вероятность выбрать вторую урну и вытащить из неё чёрный шар:

.


Вероятность выбрать третью урну и вытащить из неё чёрный шар:

,

так как в третьей урне все шары – белые.

Вероятность вытащить чёрный шар из наугад выбранной урны равна сумме этих вероятностей:

Ответ: 1) , 2) .

В одной из трёх урн 6 белых и 11 – черных шаров, во второй – 5 белых и 2 – черных, в третьей 7 белых шаров. Наугад выбирают из трёх урн и из неё снова наугад выбирают один шар. Он оказался белым. Какова вероятность того, что: 1) шар вынут из первой урны, 2) шар вынут из второй урны, 3) шар вынут из третьей урны?

Для решения данной задачи применим формулу Бейеса, суть которой в следующем: если до опыта вероятности гипотез Н 1 , Н 2 , … Н n были равны Р(Н 1), Р(Н 2), …, Р(Н n), а в результате произошло событие А, то новые (условные) вероятности гипотез вычисляются по формуле:


Где Р(Н i) – вероятность гипотезы Н i , Р(А|Н i) – условная вероятность события А при этой гипотезе.

Обозначим гипотезы:

Н 1 – выбор первой урны, Н 2 – выбор второй урны, Н 3 – выбор третьей урны.

До начала действий все эти гипотезы равновероятны:

.

После выбора оказалось, что вытащен белый шар. Найдем условные вероятности:

;

;

.

1) По формуле Бейеса апостериорная (после опыта) вероятность того, что шар был вынут из первой урны, равна:

.

2) Аналогично, вероятность того, что шар был вынут из второй урны, равна:


3) Аналогично, вероятность того, что шар был вынут из третьей урны, равна:

.

1) ,

2) ,

3) .

Из 24 студентов, которые пришли на экзамен по математике, 6 подготовлены отлично, 11 – хорошо, 5 – посредственно, 2 – плохо. В экзаменационных билетах 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный – на 16, посредственно – на 10, плохо – на 5 вопросов. Вызванный наугад студент ответил на все три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: 1) отлично, 2) плохо.


Для решения данной задачи применим формулу Бейеса:

Где Р(Н i) – вероятность гипотезы Н i ,

Р(А|Н i) – условная вероятность события А при этой гипотезе.

Обозначим гипотезы:

Н 1 – студент подготовлен отлично, Н 2 – студент подготовлен хорошо,

Н 3 – студент подготовлен посредственно, Н 4 – студент подготовлен плохо.

До начала экзамена априорные вероятности этих гипотез:

, , ,

.

После экзаменационной проверки одного из студентов оказалось, что он ответил на все три вопроса. Найдем условные вероятности, то есть вероятности ответить на все три вопроса студентом из каждой группы успеваемости:

, ,

, .

1) По формуле Бейеса апостериорная (после экзамена) вероятность того, что вызванный студент был подготовлен отлично, равна:


.

2) Аналогично, вероятность того, что вызванный студент был подготовлен плохо, равна:

.

1) Вероятность того, что вызванный студент был подготовлен отлично:

,

2) Вероятность того, что вызванный студент был подготовлен плохо:

,

Монета подбрасывается 11 раз. Найти вероятность того, что герб выпадет: 1) 2 раза, 2) не более 2-х раз, 3) не менее одного и не более 2-х раз.

Если опыт проводится n раз, а событие при этом каждый раз появляется с вероятностью р (и, соответственно, не появляется с вероятностью 1– р = q), то вероятность появления этого события m раз оценивается с помощью формулы биномиального распределения:

,

Число сочетаний из n элементов по m.

1) В данном случае р = 0,5 (вероятность выпадения герба),

q = 1 – р =0,5 (вероятность выпадения решки),

Отсюда, вероятность выпадения герба 2 раза:

2) в данном случае событие (герб) может появится 0 раз, 1 раз или 2 раза, значит искомая вероятность:


3) в этом случае событие (герб) может появится 1 раз или 2 раза, значит искомая вероятность:

Вероятность того, что герб выпадет:

1) ровно 2 раза равна

,

2) не более 2-х раз:

,

3) не менее одного и не более 2-х раз:

.

По каналу связи передаётся 11 сообщений, каждое из которых независимо от других с вероятностью р = 0,2 искажается помехами. Найти вероятность того, что: 1) из 11 сообщений ровно 2 будет искажено помехами,

2) все сообщения будут приняты без искажений, 3) не менее двух сообщений будет искажено.

1) здесь р = 0,2 (вероятность искажения),

q = 1 – р =0,8 (вероятность неискажения),

.

2) Вероятность принятия всех 11 сообщений без искажения равна произведению всех вероятностей принятия каждого из них без искажения:

3) Искажение не менее двух сообщений означает, что искажены могут быть два или одно или ни одного сообщения:

Вероятность того, что:

1) из 11 сообщений будет искажено ровно 2 равна ,

Ничего другого, кроме как опять же события и. Действительно, имеем: *=, *=, =, =. Другим примером алгебры событий L является совокупность из четырех событий: . В самом деле: *=,*=,=,. 2.Вероятность. Теория вероятностей изучает случайные события. Это значит, что до определенного момента времени, вообще говоря, нельзя сказать заранее о случайном событии А произойдет это событие или нет. Только...

Комбинаторику используют только для решения вероятностных задач с равновозможными исходами, т. е. в рамках классического подхода к понятию вероятности.

Пример 3.24. В урне 5 белых и 4 черных шара. Найти вероятность события: A – вытащить наугад белый шар, B – вытащить наугад два белых шара, C – вытащить наугад один белый и один черный шар, D – два шара одного цвета.

Число всех элементарных исходов при вытаскивании из урны наугад одного шара равно 9 или − числу сочетаний из девяти элементов по одному, т. к. всего шаров в урне 9 и выбрать один из них можно девятью способами. Благоприятствующих событию A исходов – пять или , поскольку белый шар можно вытащить из 5 белых шаров, следовательно, имеем:

Число всех элементарных исходов при вытаскивании из урны наугад двух шаров из 9 равно − числу сочетаний из девяти элементов по два. Учитывая, что число благоприятствующих событию B исходов соответственно равно , получим:

При нахождении вероятности события C – вытащить наугад один белый и один черный шар, число всех элементарных исходов также равно . Число благоприятствующих событию C исходов найдем используя правило произведения комбинаторики. Множество белых шаров содержит пять элементов, а множество черных – четыре, тогда число пар, образованных из элементов этих множеств, равно произведению количества элементов в этих множествах, т. е. Тогда вероятность события C равна:

Теперь найдем вероятность события D – вытащить два шара одного цвета, которое состоит в выборе наугад двух белых или двух черных шаров. Число всех элементарных исходов по прежнему равно . Используя правило суммы комбинаторики, получим, что число благоприятствующих событию D исходов равно , т. к. число способов выбора двух элементов из множества, содержащего пять элементов или из множества, содержащего четыре элемента (множества не пересекаются), равно сумме числа способов выбора двух элементов из каждого множества. Число всех элементарных исходов по прежнему равно . Учитывая вышеизложенное, получим:

Пример 3.25. В опыте с бросанием двух игральных костей найти вероятности выпадений в сумме на верхних гранях U 2 – двух очков, U 3 – трех очков, U 4 – четырех очков, …, U 12 – двенадцати очков.

Используяправило произведения комбинаторики, найдем число всех элементарных исходов, учитывая, что множество исходов при бросании первой кости содержит шесть элементов и множество исходов при бросании второй кости также содержит шесть элементов. Тогда число пар, образованных из элементов этих множеств, равно произведению количества элементов этих множеств, т. е.

Учитывая, что событиям U 2 и U 12 благоприятны по одному исходу – выпадение единиц на двух костях и соответственно выпадение шестерок на двух костях, найдем вероятности этих событий:

Событию U 3 благоприятны два исхода: выпадение на первой кости единицы и на второй – двойки или выпадение на первой кости двойки и на второй – единицы, так как известно (3.8.), что при бросании двух и более костей (монет) они всегда считаются различимыми. Учитывая, что событию U 11 также благоприятны два исхода: выпадение на первой кости пятерки и на второй – шестерки или наоборот, получим:

Событию U 4 благоприятны три исхода: выпадение на первой кости единицы и на второй – тройки или выпадение на первой кости тройки и на второй – единицы или выпадение двух очков и на первой и на второй костях. Заметим, что событию U 10 также благоприятны три исхода: выпадение на первой кости шестерки и на второй – четверки или выпадение на первой кости четверки и на второй – шестерки или выпадение пяти очков и на первой и на второй костях, следовательно, имеем:

Рассуждая аналогичным образом, получим:



Заметим, что событие, связанное с выпадением в сумме на верхних гранях двух игральных костей числа очков не менее двух и не более двенадцати является достоверным и его вероятность равна единице. Поскольку в каждом испытании одно из событий, состоящих в выпадении от двух до двенадцати очков включительно, обязательно произойдет, а суммарная вероятность рассматриваемых событий равна единице.

Для большей наглядности, представим полученные результаты в виде таблицы 3.4:

Таблица 3.4

Распределение очков в опыте

с бросанием двух игральных костей

Число очков

3.28. В опыте с бросанием двух игральных костей найти вероятность выпадения в сумме на верхних гранях:

а) менее трех очков;

б) более девяти очков;

в) более четырех и менее десяти;

г) хотя бы девяти очков.

3.29. Числа от 1 до 100 записывают на отдельных одинаковых карточках, помещают их в вазу и тщательно перемешивают. После этого наугад извлекают одну карточку. Найти вероятность события:

а) на карточке написано число, делящееся на 3;

б) на карточке написано число, делящееся на 3 и на 5;

г) на карточке написано число больше 90;

д) на карточке написано число больше 10 и меньше 20;

е) на карточке написано число, делящееся на 5, но не делящееся на 7.

Существует ли событие, связанное с этим опытом, вероятность которого равна 0,11? Если да, то какое это событие?

3.30. В урне 6 белых, 7 черных и 3 красных шаров. Найти вероятность события: A – вытащить наугад красный шар, B –вытащить наугад три шара разного цвета, C – вытащить наугад три шара так, чтобы хотя бы один шар был белым, D – вытащить наугад три шара так, чтобы два шара были белыми и один черный.

3.31. В урне 5 белых, 3 черных и 8 красных шара. Найти вероятность события: A – вытащить наугад черный шар, B – вытащить наугад три шара разного цвета, C – вытащить наугад три шара так, чтобы хотя бы один шар был красным, D – вытащить наугад три шара так, чтобы два шара были белыми и один красный.

3.32. Известно, что среди 15 книг имеется 5 бракованных, внешне не отличимых от доброкачественных. Наугад выбирается 5 книг. Найти вероятность события:

а) все 5 книг доброкачественные;

б) все 5 книг бракованные;

в) среди выбранных 5 книг ровно 2 бракованные;

г) среди выбранных 5 книг не более двух бракованных;

д) среди выбранных 5 книг не менее двух бракованных;

ж) среди выбранных 5 книг хотя бы три доброкачественные;

з) среди выбранных 3 книг по крайней мере две доброкачественные;

и) все выбранные 4 книги доброкачественные или бракованные.

ЗАДАЧИ ИЗ ТЕСТОВ С РЕШЕНИЯМИ

Задача 1. Из урны, в которой находятся 12 белых и 10 черных шаров, вынимают наудачу один шар. Тогда вероятность того, что этот шар будет черным, равна…

Решение.

Воспользуемся формулой , где n m A . В нашем случае возможны n =12+10=22 элементарных исхода испытания, из которых благоприятствующими являются m =10 исходов. Следовательно, .

Задача 2. Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет четное число очков, равна…

Решение.

Воспользуемся формулой , где n - общее число возможных элементарных исходов испытания, а m - число элементарных исходов, благоприятствующих появлению события A . В нашем случае возможны n =6 элементарных исходов испытания (на верхней грани появится одно, два,…, шесть очков), из которых благоприятствующими являются три исхода (два, четыре и шесть очков). Следовательно, m =3 и .

Задача 3. Из урны, в которой находятся 6 черных и 10 белых шаров, вынимают одновременно 2 шара. Тогда вероятность того, что оба шара будут белыми, равна…

Решение.

Воспользуемся формулой , где n - общее число возможных элементарных исходов испытания, а m - число элементарных исходов, благоприятствующих появлению события A . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь два шара из 16 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь два белых шара из десяти имеющихся, то есть . Следовательно, .

Задача 4. Два предприятия производят разнотипную продукцию. Вероятности их банкротства в течение года равны 0,1 и 0,2 соответственно. Тогда вероятность того, что в течение года обанкротится хотя бы одно предприятие, равна…

Решение.

Введем обозначения событий: A 1 - обанкротится первое предприятие; A 2 - обанкротится второе предприятие; A - обанкротится хотя бы одно предприятие; - ни одно предприятие не обанкротится. Тогда = , где A i . причем . Так как, по условию задачи, события A 1 и A 2 независимы, то .

Задача 5. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,7 и 0,85 соответственно. Тогда вероятность того, что в цель попадет только один стрелок, равна …

Решение.

Введем обозначения событий: A 1 - в цель попадет первый стрелок, A 2 - в цель попадет второй стрелок, A - в цель попадет только один стрелок. Тогда = + , где - событие, противоположное событию A i , причем . Так как, по условию задачи, события A 1 и A 2 несовместны и независимы, то

Задача 6. Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы этих элементов (в течение рабочего дня) равны соответственно 0,9, 0,8 и 0,7. Тогда вероятность того, что в течение рабочего дня будут работать безотказно все три элемента, равна…

Решение.

Введем обозначения событий: A i - в течение рабочего дня безотказно работает i - ый элемент, A – в течение рабочего дня работают безотказно все три элемента. Тогда A = A 1 · A 2 · A 3 . Так как, по условию задачи, события A 1 , A 2 и A 3 независимы, то P (A )= P (A 1 · A 2 · A 3 )=

P (A 1 )·P(A 2 )·P(A 3 )=0,9·0,8·0,7=0,504.

Задача 7. В первой урне 3 черных и 7 белых шаров. Во второй урне 4 белых и 6 черных шаров. В третьей урне 11 белых и 9 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна…

Решение.

A (вынутый наудачу шар – белый) применим формулу полной вероятности: .

Здесь: - вероятность того, что шар извлечен из первой урны; - вероятность того, что шар извлечен из второй урны; - вероятность того, что шар извлечен из третьей урны. - условная вероятность того, что вынутый шар белый, если он извлечен из первой урны; - условная вероятность того, что вынутый шар белый, если он извлечен из второй урны; - условная вероятность того, что вынутый шар белый, если он извлечен из третьей урны.
Тогда .

Задача 8. В первой урне 6 черных и 4 белых шара. Во второй урне 2 белых и 18 черных шаров. Из наудачу взятой урны вынули один шар, который оказался белым. Тогда вероятность того, что этот шар извлечен из первой урны, равна…

Решение.

Предварительно вычислим вероятность события A (вынутый наудачу шар – белый) по формуле полной вероятности: .

Здесь: - вероятность того, что шар извлечен из первой урны; - вероятность того, что шар извлечен из второй урны; - условная вероятность того, что вынутый шар белый, если он извлечен из первой урны; - условная вероятность того, что вынутый шар белый, если он извлечен из второй урны.
Тогда .
Теперь вычислим условную вероятность того, что шар извлечен из первой урны, если он оказался белым, по формуле Байеса:
.

Задача 9. С первого станка на сборку поступает 45%, со второго – 55% всех деталей. Среди деталей первого станка 90% стандартных, второго – 80%. Тогда вероятность того, что взятая наудачу деталь окажется нестандартной, равна …

Решение.

Для вычисления вероятности события A (взятая наудачу деталь окажется нестандартной) применим формулу полной вероятности: . Здесь: - вероятность того, что деталь поступила с первого станка; - вероятность того, что деталь поступила с второго станка; - условная вероятность того, что деталь нестандартная, если она изготовлена на первом станке; - условная вероятность того, что деталь нестандартная, если она изготовлена на втором станке.
Тогда

P (A )=0,45(1-0,9)+0,55(1-0,8)=0,045+0,11=0,155.

Задача 10. С первого станка на сборку поступает 20%, со второго – 80% всех деталей. Среди деталей первого станка 90% стандартных, второго – 70%. Взятая наудачу деталь оказалась стандартной. Тогда вероятность того, что эта деталь изготовлена на первом станке, равна …

Решение.

Предварительно вычислим вероятности события A (взятая наудачу деталь окажется стандартной) по формуле полной вероятности: .

Здесь: - вероятность того, что деталь поступила с первого станка; - вероятность того, что деталь поступила с второго станка; - условная вероятность того, что деталь стандартная, если она изготовлена на первом станке; - условная вероятность того, что деталь стандартная, если она изготовлена на втором станке.
Тогда 0,2∙0,9+0,8∙0,7=0,74..
Теперь вычислим условную вероятность того, что деталь изготовлена на первом станке, если она оказалась стандартной, по формуле Байеса:
.

Задача 11.

Решение.

По определению F (x )= P (X < x ).

Тогда
а) при , F (x )= P (X <1)=0,
б) при , F (x )= P (X =1)=0,1,
в) при ,

F (x )= P (X =1)+ P (X =3)=0,1+0,3=0,4,
г) при
x > 5,

F(x)=P(X=1)+ P(X=3)+P(X=5)+P(X=6)= 0,1+0,3+0,6=1.
Следовательно,

Задача 12. Дискретная случайная величина задана законом распределения вероятностей

Тогда значения a и b могут быть равны…

Решение.

Так как сумма вероятностей возможных значений равна 1, то a + b =1-0,1-0,2=0,7. Этому условию удовлетворяет ответ: a =0,4, b =0,3.

Задача 13. X и Y :

Тогда закон распределения вероятностей суммы
X + Y имеет вид…

Решение.

Возможные значения x ij суммы дискретных случайных величин X + Y определяются как x ij = x i + y j , а соответствующие вероятности как произведение ).
Тогда ответ:

Задача 14. Проводится n независимых испытаний, в каждом из которых вероятность появления события A постоянна и равна 0,2. Тогда математическое ожидание дискретной случайной величины X - числа появлений события A в n =100 проведенных испытаниях, равно…

Решение.

Случайная величина X подчиняется биномиальному закону распределения вероятностей. Поэтому M (X )= np =100∙0,2=20.

Задача 15. Непрерывная случайная величина задана функцией распределения вероятностей:

Тогда плотность распределения вероятностей имеет вид…

Решение.

Плотность распределения вероятностей непрерывной случайной величины вычисляется по формуле: f (x )= F ’(x ). Тогда , (1)’=0 и

Задача 16. Непрерывная случайная величина X задана плотностью распределения вероятностей . Тогда математическое ожидание a и дисперсия σ 2 этой нормально распределенной случайной величины равны…

Решение.

Плотность распределения вероятностей нормально распределенной случайной величины имеет вид: . Тогда a =3 ,σ 2 =16.

Задача 17. Дискретная случайная величина задана законом распределения вероятностей

Тогда ее функция распределения вероятностей имеет вид…

Решение.

По определению F (x )= P (X < x ).

Тогда
а) при , F (x )= P (X <1)=0,
б) при , F (x )= P (X =1)=0,2,
в) при ,

F (x )= P (X =1)+ P (X =2)=0,2+0,1=0,3,
г) при
,

F (x )= P (X =1)+ P (X =2)+ P (X =4)=0,2+0,1+0,3=0,6,
д) при
x > 6,

F(x)=P(X=1)+ P(X=2)+P(X=4)+P(X=6)=1.
Следовательно,

Задача 18. Даны две независимые дискретные случайные величины X и Y :

Решение.

Тогда закон распределения вероятностей суммы X + Y имеет вид…

Возможные значения x ij суммы дискретных случайных величин X + Y определяются как x ij = x i + y j , а соответствующие вероятности как произведение p ij = p i ∙ q j = P (X = x i ) ∙ P (Y = y j ).
Тогда правильным будет ответ:
.

Задача 19. Основная гипотеза имеет вид H 0 : σ 2 =4. Тогда конкурирующей может являться гипотеза…

Решение.

Конкурирующей (альтернативной) называют гипотезу, которая противоречит основной гипотезе. Условию σ 2 =4 противоречит H 1 :σ 2 >4.

Задача 20. r В =0,85 и выборочные средние квадратические отклонения σ X =3,2 σ Y =1,6. Тогда выборочный коэффициент регрессии X на Y равен…

Решение.

X на Y вычисляется по формуле: . Тогда .

Задача 21. y =-1,56-2,3 x .

Тогда выборочный коэффициент корреляции может быть равен…

(Варианты ответа: |1,56 | - 0,87 | - 2,3 | 0,87)

Решение.

Значение выборочного коэффициента корреляции, во-первых, принадлежит промежутку [-1,1], а во-вторых, его знак совпадает со знаком выборочного коэффициента регрессии. Этим условиям удовлетворяет значение -0,87.

Задача 22. Выборочное уравнение парной регрессии имеет вид y =6-3 x . Тогда выборочный коэффициент корреляции может быть равен…

(Варианты ответов: 0,9 | -3,0 | 6,0 | - 0,9)

Решение.

Значение выборочного коэффициента корреляции, во-первых, принадлежит промежутку [-1,1], а во-вторых, его знак совпадает со знаком выборочного коэффициента регрессии. Этим условиям удовлетворяет значение -0,9 .

Задача 23. Выборочное уравнение парной регрессии имеет вид y =-5+2 x . Тогда выборочный коэффициент регрессии равен…

Решение.

Если выборочное уравнение парной регрессии имеет вид y =α+β x , то выборочный коэффициент регрессии равен β. То есть β=2.

Задача 24. При построении выборочного уравнения парной регрессии вычислены: выборочный коэффициент корреляции r В =0,75 и выборочные средние квадратические отклонения σ X =1,1 σ Y =2,2. Тогда выборочный коэффициент регрессии X на Y равен…

Решение.

Выборочный коэффициент регрессии X на Y вычисляется по формуле: . Тогда .

Задача 25 . Мода вариационного ряда 1,2,2,3,3,3,4 равна…

Решение.

Модой вариационного ряда называется варианта, имеющая наибольшую частоту. Такой вариантой является варианта 3, частота которой равна

трем.

Задача 26 . Медиана вариационного ряда 3,4,5,6,7,12 равна…

Решение.

Медианой вариационного ряда называется варианта, расположенная в середине вариационного ряда. Так как в середине ряда располагаются две варианты: 5 и 6, то медиана равна их средней арифметической 5,5.

Задача 27 . Размах варьирования вариационного ряда 3,5,5,7,9,10,16 равен…

Решение.

Размах варьирования вариационного ряда определяется как R = x max - x min , получаем: .

Задача 29. Из генеральной совокупности извлечена выборка объема n =20:

Тогда несмещенная оценка математического ожидания равна…

Решение.

Несмещенная оценка математического ожидания вычисляется по формуле: . То есть Задача 31 . Дана интервальная оценка (8,45;9,15) математического ожидания нормально распределенного количественного признака. Тогда точечная оценка математического ожидания равна…

Решение.

Интервальная оценка математического ожидания нормально распределенного количественного признака представляет собой интервал, симметричный относительно точечной оценки. Тогда точечная оценка будет равна .

Задача 32. Дана интервальная оценка (10,45;11,55) математического ожидания нормально распределенного количественного признака. Тогда точность этой оценки равна…


Тогда значение a равно…

Решение.

Так как объем выборки вычисляется как n =(a +7+5+3) h , то a =50/2-7-5-3=10.