Домой / География / Некоторые приёмы быстрого счёта. Старт в науке Устный счет приемы

Некоторые приёмы быстрого счёта. Старт в науке Устный счет приемы

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:

Используем круглые числа
Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

Т.к. на 10 , 100 , 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10 . Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190 .
Еще пример:
31 x 29 = (30 + 1) x (30 - 1) = 30 x 30 - 1 x 1 = 900 - 1 = 899.

Упростим умножение делением
При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2 , а 50 в виде 100:2 ):
68 x 50 = (68 x 100) : 2 = 6800: 2 = 3400; 3400: 50 = (3400 x 2) : 100 = 6800: 100 = 68.
Аналогично выполняется умножение или деление на 25 , ведь 25 = 100:4 . Например,
600: 25 = (600: 100) x 4 = 6 x 4 = 24; 24 x 25 = (24 x 100) : 4 = 2400: 4 = 600.
Теперь не кажется невозможным умножить в уме 625 на 53 :
625 x 53 = 625 x 50 + 625 x 3 = (625 x 100) : 2 + 600 x 3 + 25 x 3 = (625 x 100) : 2 + 1800 + (20 + 5) x 3 = = (60000 + 2500) : 2 + 1800 + 60 + 15 = 30000 + 1250 + 1800 + 50 + 25 = 33000 + 50 + 50 + 25 = 33125.
Возведение в квадрат двузначного числа
Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25 . Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:

Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50 -ю. Например,
37^2 = 12 x 100 + 13^2 = 1200 + 169 = 1369; 84^2 = 59 x 100 + 34^2 = 5900 + 9 x 100 + 16^2 = 6800 + 256 = 7056;
В общем случае (M - двузначное число):

Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:
195^2 = (100 + 95)^2 = 10000 + 2 x 100 x 95 + 95^2 = 10000 + 9500 x 2 + 70 x 100 + 45^2 = 10000 + (90+5) x 2 x 100 + + 7000 + 20 x 100 + 5^2 = 17000 + 19000 + 2000 + 25 = 38025.
Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел
Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
Пусть даны два двузначных числа, у которых сумма единиц равна 10:
M = 10m + n, K = 10a + 10 - n.
Составив их произведение, получим:

Например, вычислим 77 x 13 . Сумма единиц этих чисел равна 10 , т.к. 7 + 3 = 10 . Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77 .
Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77 . Теперь перемножим новые числа 80 x 10 , а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10 :
13 x 77 = 10 x 80 + 3 x (77 - 10) = 800 + 3 x 67 = 800 + 3 x (60 + 7) = 800 + 3 x 60 + 3 x 7 = 800 + 180 + 21 = 800 + 201 = 1001.
У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
48 x 42 . Число десятков 4 , последующее число: 5 ; 4 x 5 = 20 . Произведение единиц: 8 x 2 = 16 . Значит, 48 x 42 = 2016.
99 x 91 . Число десятков: 9 , последующее число: 10 ; 9 x 10 = 90 . Произведение единиц: 9 x 1 = 09 . Значит, 99 x 91 = 9009.
Ага, то есть, чтобы перемножить 95 x 95 , достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
95 x 95 = 9025.
Тогда предыдущий пример можно вычислить немного проще:
195^2 = (100 + 95)^2 = 10000 + 2 x 100 x 95 + 95^2 = 10000 + 9500 x 2 + 9025 = 10000 + (90+5) x 2 x 100 + 9000 + 25 = = 10000 + 19000 + 1000 + 8000 + 25 = 38025.

Вместо заключения
Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература :
«1001 задача для умственного счёта в школе С.А. Рачинского» .

Чтобы умножить любое двухзначное число на 11 , просто сложите эти 2 цифры вместе и поместите их сумму посередине.

Например, если вы хотите умножить 53 на 11, сложите 5+3, получите восьмерку и разместите посерединке между 5 и 3, и это даст правильный ответ 583.

Если сумма двух цифр равняется 10 или более, просто прибавьте это число к левой цифре. Например, если вы хотите умножить 97 на 11, сложите 9+7 = 16. 6 поместите посередине, а 1 прибавьте к 9, что дает правильный ответ - 1067.

Деление на 5

Надо при делении на 5 умножить на 2 и убрать 0 в конце числа.

Например, 480 делить на 5. Умножаем на 2 (960) и убираем 0. Получаем 96.

Теперь сами разделите на 5 следующие числа: 540, 290, 770, 1450. И калькулятором проверяйте!

Это даёт момент торжества.

При умножении на 5 делим на 2 и приписываем 0.

Пример. 480 умножить на 5. Делим на 2, получаем 240. Дописываем 0. 2400.

Сами умножьте на 5: 540, 290, 770, 1450

Умножение на 5, 50, 500

Как известно, дети любят умножать на 10, 100, 1000. Также быстро и легко можно умножать на 5, 50, 500, особенно чётные числа.

68 х 5 = 34: 10 = 340

68 х 50 = (68: 2) х 100 = 3400

Можно и нечётные:

17 х 50 = (16 + 1) х 50 = 8 х 100 = 850

Деление на 5, 50, 500

Всё происходит в обратном порядке: сначала делимое удваиваем и отбрасываем 1, 2 или 3 нуля. Например:

135: 5 = (135 х 2) : 10 =27

2150: 50 = 2150 х 2: 100 = 4300: 100 = 43

Умножение на 25

24 х 25 = 24: 4 х 100 = 600 - легко, когда четные. Нечётные представляем в виде суммы слагаемых (или разности). Например:

37 х 25 = (36 + 1) х 25 = 36: 4 х 10 + 25 = 925

Умножение на 26 и на 24

Заменяем суммой слагаемые 26 и 24:

36 х 26 = 36 х (25 + 1) = 36: 4 х 100 + 36 = 936

36 х 24 = 36 х (25 - 1) = 900 - 36 = 864

При делении на 25 всё происходит в обратном порядке:

360: 25 = (360 х 2) х 2 х 100 = 1440: 100 = 14,4

225: 25 = (225 х 2) х 2: 100 = 9.

Умножение на 125 - это деление на 8 и умножение на 1000:

42 х 125 = 88: 8 х 1000 = 11 000

Если число на 8 не делится, то используем один из перечисленных приёмов:

42 х 125 = 40: 8 х 1000 + 2 х 125 = 5000 + 250 = 5250.

Умножение на 9 , 99, 999

Удобно заменить на 10 - 1, 100 - 1, 1000 - 1

Умножение чётных чисел на 15

Делим число на 2 и прибавляем к искомому числу, затем всё умножаем на 10. Этот приём действует только для чётных чисел. Например:

14 х 15 = (14: 2 + 14) х 10 = 21 х 10 = 210

26: 15 = (26: 2 + 26) х 10 = 39 х 10 = 390

Нечётные представлены в виде суммы слагаемых

23 х 15 = (22 + 1) х 15 = (22: 2 + 22) х 10 +15 = 330 +15 = 345

Используя этот приём, можно умножать на 16 и 14 - (15 +1) и (15 - 1):

66 х 16 = 66 х (15 + 1) = (66: 2 + 66) х 10 + 66 = 1156

Умножение чисел, оканчивающихся на 5, самих на себя

35 х 35 = 3 х 4 и приписываем 5 х 5, т.е. 35 х 35 = 1225

Умножение на 11 и на 111

а) 32 х 11 = 32 х 10 + 32 = 352

б) раздвигаем цифры 3 и 2 вставляем между ними их сумму: 3 5 2

в) при умножении на 111, допустим 25:

Раздвигаем цифры множимого

Находим их сумму

Вписываем её уже 2 раза:

25 х 111 = 2 7 7 5

Если сумма цифр двузначного числа больше 10, то делаем так:

Число десятков множимого увеличиваем на 1,

Раздвигаем десятки и единицы

Вписываем единицы суммы десятков и единиц множимого:

78 х 11 = (7+1) (7+8) 8 = 8 15 8 = 858

г) чтобы умножить трёхзначное число на 11, нужно:

Число сотен и единиц оставить на своих местах

Приписать сумму сотен и десятков множимого

Приписать сумму десятков и единиц

115 х 11 = 1 (1+1) (1+5) 5 = 1265

Сложение нескольких последовательных чисел натурального ряда.

а) чтобы сложить несколько последовательных чисел натурального ряда (нечётное количество), необходимо слагаемое, стоящее посередине, умножить на число слагаемых:

6 + 7 + 8 + 9 + 10 = 8 х 5 = 40

б) если чисел чётное количество, то берём два слагаемых, стоящих посередине и их сумму умножаем на половину количества слагаемых

6 + 7 + 8 + 9 + 10 + 11 = 8+9 х 3 = 51

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10 . В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10 ». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10 , а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6 . Чтобы из 8 получить 10 , не хватает 2 . Затем к 10 останется прибавить 4=6-2 . В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728 . Число 356 можно представить как 300+50+6 . Аналогично, 728 будет иметь вид 700+20+8 . Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321 ? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1 .

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4 , это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения . Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6 . Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32 . Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57 . Это значит, что на нужно взять число «79 » 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50 , а потом – 79 на 7 .

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11 , две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число - результат умножения исходного числа на 11 .

Проверим и умножим 54 на 11 .

  • 5+4=9
  • 54*11=594

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами - эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5 .

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n , то следующей за ней по иерархии цифрой будет n+1 . Результат заканчивается на квадрат последней цифры, то есть квадрат 5 .

Проверим! Возведем в квадрат число 75 .

  • 7*8=56
  • 5*5=25
  • 75*75=5625

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144 , которое нужно разделить на 8 . Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600 . Представим пример в виде:

6144:8=(5600+544):8=700+544:8

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656 . По правилу, последняя цифра в получившемся числе будет 0 , так как 5*6=30 . Действительно, 1325*656=869200 .

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56 ?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424 . Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70 . Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4 . Согласно таблице умножения, нам подходят результаты 4 и 9 . Логично предположить, что результатом деления может быть либо число 74 , либо 79 . Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79 , второй вариант обязательно оказался бы верным.

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Вы забыли деньги дома и коллега любезно согласился купить вам ланч. На обратном пути вы заглянули в магазин за перекусом, а там объявили суперакцию на любимые шоколадки. Вы не удержались и взяли 5 штук. Вы были так заняты покупками, что забыли про свой смартфон и не посчитали, сколько в итоге вы задолжали коллеге. Ситуация некрасивая. Куда проще было бы сразу всё сложить в уме. Но… кому это нужно, когда в каждом телефоне давно есть калькулятор!

Счёт в уме может быть таким же быстрым, как и на калькуляторе. Особенное, если дело касается бытовых вопросов. Главное, освоить приёмы быстрого счёта и периодически практиковать их. В материале приводим самые простые из них.

Разбивка задачи на части

Даже самые сложные арифметические задачи можно разбить на простые.

Пример: как вы посчитаете 15% скидки, если известна полная стоимость товара?

В этом случае имеет смысл разбить 15 на 10% и 5%. 10% отнять достаточно просто, а 5% - это половина от 10%.

Предположим, у нас есть товар за 900 рублей, 10% от него - 90 рублей, 5% - 45. Складываем: 90+45 = 135. Окончательная стоимость товара со скидкой 15%: 900 - 135 = 765 рублей.

Округление до целого

Этот приём подразумевает использование дополнения - числа, которое заполняет промежуток между данным числом и числом, которое, как правило, оканчивается на 00.

Например, дополнительным числом для 87 будет 13, так как их сумма даёт 100.

Пример 1234 - 678 кажется сложным. Округлим 678 до 700. Вычислить 1234 - 700 будет сильно проще, результат 534.

Так как мы вычли слишком большое число, то результату нужно вернуть недостающее: 700 - 678 = 22, к 534 прибавляем 22 и получаем окончательный результат 556.

Умножение на 11

Мы знаем, как просто умножить любое однозначное число на 11: просто два раза повторить его и - готово!

Но мало кто владеет навыком умножения двузначных и даже трёхзначных чисел на 11.

Чтобы умножить двузначное число на 11, необходимо разнести его цифры в разные стороны, а посередине записать их сумму. Если сумма больше 10 - то посередине оставляем вторую цифру от полученного числа, а десяток, то есть единицу, прибавляем к первой цифре.

Пример 1: 36×11 = 3 (3+6) 6 = 396

Пример 2: 57×11 = 5 (5+7) 7 = 627

Для умножения трёхзначных чисел:

  • Оставьте без изменения первую и последнюю цифру числа.
  • Сложите предпоследнюю цифру с последней запишите результат. Если он больше 10, запомните единицу.
  • Прибавьте к первой цифре вторую и запишите результат. Если от предыдущего сложения осталась единица, добавьте её к результату.
  • Если в результате последнего сложения осталась единица, прибавьте её к первой цифре исходного числа.

Пример 3 : 869×11

  1. Запоминаем 9 во временный результат. Результат: 8...9.
  2. Складываем 6 и 9, получаем 15. Записываем 5 перед 9, 1 - запоминаем. Результат: 8...59 (1 в уме).
  3. Складываем 8 и 6, получаем 14, прибавляем 1 из прошлого результата. Результат: 8559 (1 в уме).
  4. Прибавляем к 8 единицу из прошлого результата. Результат: 9559.

Умножение чисел от 11 до 19

Умножать такие числа можно используя следующий алгоритм:

  • Любое число из диапазона от 11 до 19 представляем как десятки и единицы.
  • Получаем формулу: (10+a)×(10+b).
  • Раскрываем скобки: 100+10×b+10×a+a×b.
  • Выносим за скобки общий множитель и получаем окончательную формулу, по которой можно считать и которую есть смысл запомнить: 100+10×(a+b)+a×b.

Пример: 13×17

  1. Сложим единицы - 3+7=10.
  2. Умножим результат на 10: 10×10 = 100.
  3. Прибавим 100: 100+100=200.
  4. Перемножим единицы: 3×7 = 21.
  5. Прибавим к результату из шага 3: 200+21 = 221.

Ментальная арифметика

Научиться считать в уме можно, освоив приёмы ментальной арифметики. Сначала вы изучаете выполнение арифметических операций на японских счётах - соробане. Затем тренируетесь совершать те же вычисления, передвигая костяшки в уме. Мы уже писали подробнее о том, . Освоить методику полностью помогут курсы ментальной арифметики !

Филиал МБОУ Токарёвской СОШ №1 в с.Полетаево

Исследовательская работа

научный руководитель: Зуева Ирина Петровна

учитель математики

Полетаево 2016 год

Введение.

Глава I. Исследование теории

1.1. Возникновение счета у первобытных людей

1.2. Изменение счета при появлении цивилизации

1.3. Первая литература по способам счёта

1.4. Таблица умножения на пальцах

1.5. Люди - феномены быстрого счёта

Глава II. Эксперименты и анализ решения

2.1. Умножение на 11 числа, сумма цифр которого меньше 10

2.2. Умножение на 11 числа, сумма цифр которого больше 10.

2.4 Умножение на 22,33,…,99

2.5 Умножение на число 111, 1111 и т. д., зная правила

умножения двузначного числа на число 11.

2.6. Умножение двузначного числа на 101, 1001 и т.д.

2.7. Умножение на 37

Выводы.

Список использованной литературы.

Введение.

Для участия в конференции творческих работ школьников «Малые грани.» я достаточно быстро определилась с выбором темы. Мне всегда было интересно, какими методами пользуются учителя математики при проверке тетрадей, при объяснении нового материала, когда приходится произвести быстрый расчёт. Определённые приёмы быстрого счёта, предложенные на уроках, мне давались легко, но чем дальше мы познаём математику, тем больше мне хочется узнать о том, как можно еще использовать быстрый счёт на более сложных числах.

Здесь будет файл: /data/edu/files/i1461402798.pptx (Нестандартные приемы устного счета)

Я выбрала тему «Нестандартные приемы устного счета » потому, что я люблю математику и хотела бы научиться считать быстро и правильно, не прибегая к использованию калькулятора.

Я поставила перед собой проблему: найти и рассмотреть нестандартные приёмы устного быстрого счёта, не рассматриваемые непосредственно в школьном курсе математики.

Объект исследования - вычислительные навыки и быстрый счёт на уроках предметов естественно - математического цикла.

Предмет исследования - нестандартные приёмы и навыки устного счёта при умножении натуральных чисел.

Задачи 1)узнать об упрощённых, нестандартных способах устных вычислений при умножении натуральных чисел.

2)рассмотреть и показать на примерах применение нестандартных способов при умножении и делении чисел.

Методы исследования:

1) сбор информации;

2) систематизация и обобщение.

Цель исследовательской работы: изучить методы и приёмы быстрого счёта и доказать необходимость умения быстрого счёта и эффективного использования этих приёмов.

Актуальность выбранной темы заключается в том, что нижеперечисленные способы быстрого счёта рассчитаны на ум «обычного» человека и не требуют уникальных способностей. Главное - более или менее продолжительная тренировка. Кроме того освоение этих навыков развивает логику и память учащегося.

ГЛАВА I.

1.1. Как люди научились считать.

На этом этапе мне предстоит окунуться в историю появления счёта, чтобы понять преимущества людей, обладающих приёмами быстрого счета.

Никто не знает, как впервые появилось число, как первобытный человек начал считать. Однако десятки тысяч лет назад первобытный человек собирал плоды деревьев, ходил на охоту, ловил рыбу, научился делать каменный топор и нож, и ему приходилось считать различные предметы, с которыми он встречался в повседневной жизни. Постепенно возникала необходимость отвечать на жизненно важные вопросы: по сколько плодов достанется каждому, чтобы хватило всем, сколько расходовать сегодня, чтобы оставить про запас, сколько нужно сделать ножей и т.п. Таким образом, сам не замечая, человек начал считать и вычислять.

Вначале человек научился выделять единичные предметы. Например, из стаи волков, стада оленей он выделял одного вожака, из выводка птенцов - одного птенца и т.д. Научившись выделять один предмет из множества других, говорили «один», а если их было больше - «много». Даже для названия числа «один» часто пользовались словом, которым обозначался единичный предмет, например «луна», «солнце». Такое совпадение названия предмета и числа сохранилось в языке некоторых народов до наших дней.

Частые наблюдения множеств, состоящих из пары предметов (глаза, уши, крылья, руки) привели человека к представлению о числе два. До сих пор слово «два» на некоторых языках звучит так же, как «глаза» или «крылья».

Если предметов было больше двух, то первобытный человек говорил «много». Лишь постепенно человек научился считать до трёх, затем до пяти и до десяти и т.д. Название каждого числа отдельным словом было великим шагом вперёд.

Для счёта люди использовали пальцы рук, ног. Ведь и маленькие дети тоже учатся считать по пальцам. Однако этот способ годился только в пределах двадцати.

1.2. Изменение счёта при появлении цивилизации.

По мере развития речи люди начали использовать слова для обозначения чисел. Отпала необходимость показывать кому-то пальцы, камешки или реальные предметы, чтобы назвать их количество. Для изображения чисел стали применяться рисунки, чертежи или символы. Существовали и системы с отдельными символами для каждой цифры до 9 включительно, как в арабской системе счисления, которую мы сейчас используем, а у греков имелся специальный символ и для 10.

При помощи пальцев рук люди научились не только считать большие числа, но и выполнять действия сложения и вычитания.

Древние торговцы для удобства счёта начали накладывать зерна и раковины на специальную дощечку, которая со временем стала называться абаком.

Особенно сложны и трудны были в старину действия умножения и деления, особенно последнее. «Умноженье - мое мученье, а с деленьем - беда» - говорили в старину. Тогда не существовало еще, как теперь, одного выработанного практикой приёма для каждого действия. Напротив, в ходу была одновременно чуть ли не дюжина различных способов умножения и деления - приёмы один другого запутаннее, твёрдо запомнить которые не в силах был человек средних способностей. Каждый учитель счётного дела держался своего излюбленного приёма, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

1.3. Первая литература по способам счёта.

В книге В. Беллюстина « Как постепенно дошли люди до настоящей арифметики» (1914) изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще (способы), скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом рукописных сборниках».Наш современный способ умножения описан там под названием «шахматного». Был так же и очень интересный, точный, лёгкий, но громоздкий способ «галерой» или «лодкой», названный так в силу того, что при делении чисел этим способом получается фигура, похожая на лодку или галеру. У нас такой способ употреблялся до середины XVIII века. («Арифметика» - старинный русский учебник математики, которую Ломоносов назвал «вратами своей учености») пользуется исключительно способом «галеры», не употребляя, впрочем, этого названия.

Упоминаются такие способы, как «загибанием», «решеткой», «задом наперед», «ромбом», «треугольником» и многие другие. Многие такие приемы для умножения чисел долгие и требуют обязательной проверки.

Интересно, что и наш способ умножения не является совершенным, можно придумать еще более быстрые и еще более надежные.

1.4. Таблица умножения на «пальцах».

Таблица умножения - те необходимые в жизни каждого человека знания, которые требуется элементарно заучить, что на первых школьных порах даётся совсем не элементарно. Это потом уже с легкостью мага мы «щелкаем» примеры на умножение: 2·3, 3·5, 4·6 и т.д., но со временем все чаще забываемся на множителях ближе к 9, особенно если счетной практики давно не ведали, отчего отдаемся во власть калькулятора или надеемся на свежесть знаний друга. Однако, овладев одной незамысловатой техникой «ручного» умножения, мы можем запросто отказаться от услуг калькулятора. Уточнение: речь идет о школьной таблице умножения, т.е. для чисел от 2 до 9, умножаемых на числа от 1 до 10.

Умножение для числа 9 - 9·1, 9·2 … 9·10 - легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится» на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке). Допустим, хотим умножить 9 на 7. Загибаем палец с номером, равным числу, на которое мы будем умножать 9. В нашем примере нужно загнуть палец с номером 7. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа - количество единиц. Слева у нас 6 пальцев не загнуто, справа - 3 пальца. Таким образом, 9·7=63. Ниже на рисунке детально показан весь принцип «вычисления».

Еще пример: нужно вычислить 9·9=? По ходу дела скажем, что в качестве «счетной машинки» не обязательно могут выступать пальцы рук. Возьмите к примеру 10 клеточек в тетради. Зачеркиваем 9-ю клеточку. Слева осталось 8 клеточек, справа - 1 клеточка. Значит 9·9=81. Все очень просто.

Умножение для числа 8 - 8·1, 8·2 … 8·10 - действия здесь похожи на умножение для числа 9 за некоторыми изменениями. Во-первых, поскольку числу 8 не хватает уже двойки до круглого числа 10, нам необходимо каждый раз загибать сразу два пальца - с номером х и следующий палец с номером х+1. Во-вторых, тотчас же после загнутых пальцев мы должны загнуть еще столько пальцев, сколько осталось не загнутых пальцев слева. В-третьих, это напрямую работает при умножении на число от 1 до 5, а при умножении на число от 6 до 10 нужно отнять от числа х пятерку и выполнить расчёт как для числа от 1 до 5., а к ответу затем добавить число 40, потому что иначе придется выполнять переход через десяток, что не совсем удобно «на пальцах», хотя в принципе это не так сложно. Вообще надо заметить, что умножение для чисел ниже 9 тем неудобнее выполнять «на пальцах», чем ниже число расположено от 9.

Теперь рассмотрим пример умножения для числа 8. Допустим, хотим умножить 8 на 3. Загибаем палец с номером 3 и за ним палец с номером 4 (3+1). Слева у нас осталось 2 незагнутых пальца, значит нам необходимо загнуть еще 2 пальца после пальца с номером 4 (это будут пальцы с номерами 5, 6 и 7). Осталось 2 пальца не загнуто слева и 4 пальца - справа. Следовательно, 8·3=24.

Еще пример: вычислить 8·8=? Как было сказано выше, при умножении на число от 6 до 10 нужно отнять от числа х пятерку, выполнить расчет с новым число х-5, а затем добавить к ответу число 40. У нас х=8, значит загибаем палец с номером 3 (8-5=3) и следующий палец с номером 4 (3+1). Слева два пальца остались не загнуты, значит загибаем еще два пальца (с номером 5,6). Получаем: слева 2 пальца не загнуты и справа - 4 пальца, что обозначает число 24. Но к этому числу нужно еще добавить 40: 24+40=64. В итоге 8·8=64.

1.5. Люди - феномен быстрого счёта.

Феномен особых способностей в устном счёте встречается с давних пор. Как известно, ими обладали многие ученые, в частности Андре Ампер и Карл Гаусс. Однако, умение быстро считать было присуще и многим людям, чья профессия была далека от математики и науки в целом.

До второй половины XX века на эстраде были популярны выступления специалистов в устном счёте. Иногда они устраивали показательные соревнования между собой. Известными российскими «суперсчетчиками» являются Арон Чиквашвили, Давид Гольдштейн, Юрий Горный, зарубежными - Борислав Гаджански, Вильям Клайн, Томас Фулер и другие.

Хотя некоторые специалисты уверяли, что дело во врожденных способностях, другие аргументировано доказывали обратное: «дело не только и не столько в каких-то исключительных «феноменальных» способностях, а в знании некоторых математических законов, позволяющих быстро производить вычисления» и охотно раскрывали эти законы.

Истина как обычно, оказалась на некоей «золотой середине» сочетания природных способностей и грамотного, трудолюбивого их пробуждения, взращивания и использования. Те, кто следуя Трофиму Лысенко уповают исключительно на волю и напористость, со всеми уже хорошо известными способами и приемами устного счёта обычно при всех стараниях не поднимаются выше очень и очень средних достижений. Более того, настойчивые попытки «хорошенько нагрузить» мозг такими занятиями как устный счёт, шахматы вслепую и т.п. легко могут привести к перенапряжению и заметному падению умственной работоспособности, памяти и самочувствия (а в наиболее тяжелых случаях - и к шизофрении). С другой стороны и одаренные люди при беспорядочном использовании своих талантов в такой области как устный счёт быстро «перегорают» и перестают быть в состоянии длительно и устойчиво показывать яркие достижения. Один из примеров удачного сочетания обоих условий (природной одаренности и большой грамотной работы над собой) показал наш соотечественник, уроженец Алтайского края Юрий Горный.

Пожалуй, единственная научно обоснованная и достаточно подробно разработанная система резкого повышения быстроты устного счёта создана была в годы второй мировой войны цюрихским профессором математики Я. Трахтенбергом. Она известна под названием «Система быстрого счёта». История ее создания необычная. В 1941г. гитлеровцы бросили Трахтенберга в концлагерь. Чтобы уцелеть в нечеловеческих условиях и сохранить нормальной свою психику, Трахтенберг начал разрабатывать принципы ускоренного счета. За четыре страшных года пребывания в концлагере профессору удалось создать стройную систему ускоренного обучения детей и взрослых основам быстрого счёта. Уже с самого начала результаты были самые отрадные. Учащиеся радовались вновь приобретенным навыкам и с воодушевлением двигались вперед. Если раньше их отталкивала монотонность, то сейчас их привлекало разнообразие приёмов. Шаг за шагом, благодаря достигнутым ими успехам, рос интерес к занятиям. После войны Трахтенберг создал и возглавил Цюрихский математический институт, получивший мировую известность.

Также разработкой приёмов быстрого счёта занимались другие ученые: Яков Исидорович Перельман, Георгий Берман и другие.

Приведу примеры умножения чисел, получившие наибольшее описание в литературе.

ГлаваII.

2.1 Умножение на 11 числа, сумма цифр которого не превышает 10.

Чтобы умножить на 11 число, сумма цифр которого 10 или меньше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить 1, а вторую и последнюю (третью) цифру оставить без изменения.

27 х 11= 2 (2+7) 7 = 297;

62 х 11= 6 (6+2) 2 = 682.

2.2 Умножение на 11 числа, сумма цифр которого больше 10.

Чтобы умножить на 11 число, сумма цифр которого 10 или больше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить 1, а вторую и последнюю (третью) цифру оставить без изменения.

86 х 11= 8 (8+6) 6 = 8 (14) 6 = (8+1) 46 = 946.

2.3 Умножение на одиннадцать (по Трахтенбергу).

Разберем на примере: 633 умножить на 11.

Ответ пишется под 633 по одной цифре справа налево, как указано в правилах.

Первое правило. Напишите последнюю цифру числа 633 в качестве правой цифры результата

633*11

Второе правило. Каждая последующая цифра числа 633 складывается со своим правым соседом и записывается в результат.3+3 будет 6. Перед тройкой записываем результат 6.

633*11

Применим правило еще раз: 6+3 будет 9. Записываем и эту цифру в результате:

633*11

Третье правило. Первая цифра числа 633, то есть 6, становится левой цифрой результата:

633*11

6963

Ответ: 6963.

2.4 Умножение на 22,33,…,99

Чтобы двузначное число умножить на 22,33,…, 99, надо этот множитель представить в виде произведения однозначного числа (от 2 до 9) на 11, то есть 33 = 3 х 11; 44 = 4 х 11 и т.д. Затем произведение первых чисел умножить на 11.

Примеры:

18 х 44 = 18 х 4 х 11 = 72 х 11 = 792;

42 х 22 = 42 х 2 х 11 = 84 х 11 = 924;

13 х 55 = 13 х 5 х 11 = 65 х 11 = 715;

24 х 99 = 24 х 9 х 11 = 216 х 11 = 2376.

2.5 Умножение на число 111, 1111 и т. д., зная правила умножения двузначного числа на число 11.

Если сумма цифр первого множителя меньше 10, надо мысленно раздвинуть цифры этого числа на 2, 3 и т.д. шага, сложить цифры и записать соответствующее количество раз их сумму между раздвинутыми цифрами. Количество шагов всегда меньше количества единиц на 1.

Пример:

24х111=2(2+4) (2+4)4=2664 (количество шагов - 2)

24х1111=2(2+4)(2+4)(2+4)4=26664 (количество шагов - 3)

При умножении числа 72 на 111111 цифры 7 и 2 надо раздвинуть на 5 шагов. Эти вычисления можно легко произвести в уме.

42 х 111 111 = 4 (4+2) (4+2) (4+2) (4+2) (4+2) 2 = 4666662. (количество шагов - 5)

Если единиц 6, то шагов будет 1 меньше, то есть 5.

Если единиц 7, то шагов будет 6 и т.д.

Умножение двузначного числа на 111, 1111, 1111 и т.д., сумма цифр которого равна или больше 10.

Немного сложнее выполнить устное умножение, если сумма цифр первого множителя равна 10 или более 10.

Примеры:

86 х 111 = 8 (8+6) (8+6) 6 = 8 (14) (14) 6 = (8+1) (4+1) 46 = 9546.

В этом случае надо к первой цифре 8 прибавить 1, получим 9, далее 4+1 = 5; а последние цифры 4 и 6 оставляем без изменения. Получаем ответ 9546.

2.6. Умножение двузначного числа на 101, 1001 и т.д..

Пожалуй, самое простое правило: припишите ваше число к самому себе. Умножение закончено. Пример:

32 х 101 = 3232; 47 х 101 = 4747;

324 х 1001 = 324 324; 675 х 1001 = 675 675;

6478 х 10001 = 64786478;

846932 х 1000001 = 846932846932.

2.7. Умножение на 37

Прежде чем научиться устно умножать на 37,надо хорошо знать признак делимости и таблицу умножения на 3. Чтобы устно умножить число на 37, надо это число разделить на 3 и умножить на 111.

Примеры:

24 х 37 = (24: 3) х 37 х 3 = 8 х 111 = 888;

18 х 37 = (18: 3) х 111 = 6 х 111 = 666.

2.8. Алгоритм перемножения двузначных чисел, близких к 100

Например: 98 х 97 = 9506

Здесь я пользуюсь таким алгоритмом: если хочешь перемножить два

двузначных числа, близких к 100, то поступай так:

1) найди недостатки сомножителей до сотни;

2) вычти из одного сомножителя недостаток второго до сотни;

3) к результату припиши двумя цифрами произведение недостатков

сомножителей до сотни.

2.9. Умножение трёхзначного числа на 999.

Любопытная особенность числа 999 проявляется при умножении на него всякого другого трёхзначного числа. Тогда получается шестизначное произведение: первые три цифры есть умножаемое число, только уменьшенное на единицу, а остальные три цифры (кроме последней) - «дополнения» первых до 9. Например:

385 * 999 = 384615

573 * 999 = 572427 943 * 999 = 942057

2.10. Умножение на шесть (по Трахтенбергу)

Нужно прибавить к каждой цифре половину «соседа».

Пример: 0622084 * 6

0622084 * 6 4 является правой цифрой этого числа и, так 4 как «соседа» у неё нет, прибавлять нечего.

06222084 * 6 Вторая цифра 8, е «сосед» - 4. Мы берём 8 04 прибавляем половину 4 (2) и получаем 10, ноль пишем, 1 в перенос.

06222084 * 6 Следующая цифра ноль. Мы прибавляем к ней

504 половину «соседа» 8 (4), то есть 0 + 4 = 4 плюс

перенос (1).

Остальные цифры аналогичны.

Ответ: 06222084 * 6

3732504

Правило умножения на 6: является «сосед» чётным или не чётным - никакой роли не играет. Мы смотрим только на саму цифру: если она чётная, прибавляем к ней её целую часть половины «соседа», если нечётная, то кроме половины «соседа» прибавляем еще 5.

Пример: 0443052 * 6

0443052 * 6 2 - чётная и не имеет «соседа», напишем её снизу

0443052 * 6 5 - нечётная: 5+5 и плюс половина «соседа» 2 (1)

12 будет 11. Запишем 1 и в перенос 1

0443052 * 6 половина от 5 будет 2, и прибавим перенос 1, то будет 3

0443052 * 6 3 - нечетная, 3 + 5 = 8

8312

0443052 * 6 4 + половина от 3 (1) будет 5

58312

0443052 * 6 4 + половина от 4 (2) будет 6

658312

0443052 * 6 ноль + половина от 4 (2) будет 2

2658312 Ответ: 2658312.

Выводы:

Система быстрого счёта по Трахтенбергу основана на закономерностях умножения чисел. Чтобы умножить на 11, 12, 6 и т.д. нужно знать алгоритм выполнения. Этим система неудобна, нужно в памяти держать много правил быстрого счёта, но система Трахтенберга показывает как красива математика, если человек открывает тайны её закономерностей, изучает их и учится применять их на практике.

Выводы исследования

Как мы видим, быстрый счёт это уже не тайна за семью печатями, а научно разработанная система. Раз есть система, значит её можно изучать, ей можно следовать, ею можно овладевать.

Все рассмотренные мною методы устного умножения говорят о многолетнем интересе ученых, и простых людей к игре с цифрами.

Используя некоторые из этих методов на уроках или дома, можно развить скорость вычислений, привить интерес к математике, добиться успехов в изучении всех школьных предметов.

Список использованной литературы

1. «Устный счёт - гимнастика ума» Г.А.Филиппов

2. «Алгоритмы ускоренных вычислений» Л.В. Бикташева

3. «Устный счет». Э.Л.Струнников

4. «Математическая шкатулка» Ф.Ф.Нагибин Е.С.Канин

5. «Мир чисел» Г.И. Зубелевич В.И.Ефимов

6. «Задачи для математического кружка» Е.Г.Козлова

7. «Развитие вычислительной культуры учащихся» НЛ. Мельникова

8. Библиотечка «Первое сентября»