Домой / Английский / Арифметическая прогрессия формулы 9. Урок по алгебре "Арифметическая и геометрическая прогрессии" (9 класс). II. Актуализация знаний, устная работа

Арифметическая прогрессия формулы 9. Урок по алгебре "Арифметическая и геометрическая прогрессии" (9 класс). II. Актуализация знаний, устная работа

Класс: 9

Тип урока: урок изучения нового материала.

Цель урока: Формирование понятия арифметической прогрессии как одного из видов последовательностей, вывод формулы n-го члена, знакомство с характеристическим свойством членов арифметической прогрессии. Решение задач.

Задачи урока:

  • Образовательные - ввести понятия арифметической прогрессии; формулы n-го члена; характеристическое свойство, которым обладают члены арифметических прогрессий.
  • Развивающие - вырабатывать умения сравнивать математические понятия, находить сходства и различия, умения наблюдать, подмечать закономерности, проводить рассуждения по аналогии; сформировать умение строить и интерпретировать математическую модель некоторой реальной ситуации.
  • Воспитательные - содействовать воспитанию интереса к математике и ее приложениям, активности, умению общаться, аргументировано отстаивать свои взгляды.

Оборудование: компьютер, мультимедийный проектор, презентация (Приложение 1)

Учебные пособия: Алгебра 9, Ю.Н.Макарычев, Н.Г.Миндюк, К.Н.Нешков, С.Б.Суворова под редакцией С.А.Теляковского, ОАО "Московские учебники", 2010

План урока:

  1. Организационный момент, постановка задачи
  2. Актуализация знаний, устная работа
  3. Изучение нового материала
  4. Первичное закрепление
  5. Подведение итогов урока
  6. Домашнее задание

В целях повышения наглядности и удобства работы с материалом, урок идет в сопровождении презентации. Однако это не является обязательным условием, и тот же урок может быть проведен в классах, не оснащенных мультимедийным оборудованием. Для этого необходимые данные могут быть подготовлены на доске или в виде таблиц и плакатов.

Ход урока

I. Организационный момент, постановка задачи.

Приветствие.

Тема сегодняшнего урока - арифметическая прогрессия. На этом уроке мы узнаем, что такое арифметическая прогрессия, какой общий вид она имеет, выясним, как отличить арифметическую прогрессию от других последовательностей и решим задачи, где используются свойства арифметических прогрессий.

II. Актуализация знаний, устная работа.

Последовательность () задана формулой: =. Какой номер имеет член этой последовательности, если он равен 144? 225? 100? Являются ли членами этой последовательности числа 48? 49? 168?

О последовательности () известно, что , . Как называется такой способ задания последовательности? Найдите первые четыре члена этой последовательности.

О последовательности () известно, что . Как называется такой способ задания последовательности? Найдите , если?

III. Изучение нового материала.

Прогрессия - последовательность величин, каждая следующая из которых находится в некоей, общей для всей прогрессии, зависимости от предыдущей. Термин ныне во многом устарел и встречается только в сочетаниях "арифметическая прогрессия" и "геометрическая прогрессия".

Термин "прогрессия" имеет латинское происхождение (progression, что означает "движение вперед") и был введен римским автором Боэцием (VI в.). Этим термином в математике прежде именовали всякую последовательность чисел, построенную по такому закону, который позволяет неограниченно продолжать эту последовательность в одном направлении. В настоящее время термин "прогрессия" в первоначально широком смысле не употребляется. Два важных частных вида прогрессий - арифметическая и геометрическая - сохранили свои названия.

Рассмотрим последовательности чисел:

  • 2, 6, 10, 14, 18, :.
  • 11, 8, 5, 2, -1, :.
  • 5, 5, 5, 5, 5, :.

Чему равен третий член первой последовательности? Последующий член? Предыдущий член? Чему равна разность между вторым и первым членами? Третьим и вторым членами? Четвертым и третьим?

Если последовательность построена по одному закону, сделайте вывод, какой будет разность между шестым и пятым членами первой последовательности? Между седьмым и шестым?

Назовите два последующих члена каждой последовательности. Почему Вы так считаете?

(Ответы учеников)

Каким общим свойством обладают эти последовательности? Сформулируйте это свойство.

(Ответы учеников)

Числовые последовательности, обладающие этим свойством, называются арифметическими прогрессиями. Предложить учащимся самим попробовать сформулировать определение.

Определение арифметической прогрессии: арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом:

( - арифметическая прогрессия, если , где некоторое число.

Число d , показывающее, на сколько следующий член последовательности отличается от предыдущего, называется разностью прогрессии: .

Давайте еще раз посмотрим на последовательности и поговорим о различиях. Какие особенности есть у каждой последовательности и с чем они связаны?

Если в арифметической прогрессии разность положительна , то прогрессия является возрастающей: 2, 6, 10, 14, 18, :. (

Если в арифметической прогрессии разность отрицательна ( , то прогрессия является убывающей: 11, 8, 5, 2, -1, :. (

В случае, если разность равна нулю () и все члены прогрессии равны одному и тому же числу, последовательность называется стационарной: 5, 5, 5, 5, :.

Как задать арифметическую прогрессию? Рассмотрим следующую задачу.

Задача. На складе 1 числа было 50 тонн угля. Каждый день в течение месяца на склад приходит машина с 3 тоннами угля. Сколько угля будет на складе 30 числа, если в течение этого времени уголь со склада не расходовался.

Если выписать количество угля, находящегося на складе каждого числа, получим арифметическую прогрессию. Как решить эту задачу? Неужели придется просчитывать количество угля в каждый из дней месяца? Можно ли как-то обойтись без этого? Замечаем, что до 30 числа на склад придет 29 машин с углем. Таким образом, 30 числа на складе будет 50+329=137 тонн угля.

Таким образом, зная только первый член арифметической прогрессии и разность, мы можем найти любой член последовательности. Всегда ли это так?

Проанализируем, как зависит каждый член последовательности от первого члена и разности:

Таким образом, мы получили формулу n-ого члена арифметической прогрессии.

Пример 1. Последовательность ()-арифметическая прогрессия. Найдите , если и .

Воспользуемся формулой n-ого члена ,

Ответ: 260.

Рассмотрим следующую задачу:

В арифметической прогрессии четные члены оказались затерты: 3, :, 7, :, 13: Можно ли восстановить утраченные числа?

Учащиеся, скорее всего, сначала вычислят разность прогрессии, а затем будут находить неизвестные члены прогрессии. Тогда можно предложить им найти зависимость между неизвестным членом последовательности, предыдущим и последующим.

Решение: Воспользуемся тем, что в арифметической прогрессии разность между соседними членами постоянна. Пусть - искомый член последовательности. Тогда

.

Замечание. Данное свойство арифметической прогрессии является ее характеристическим свойством. Это означает, что в любой арифметической прогрессии каждый член, начиная со второго равен среднему арифметическому предыдущего и последующего (. И, наоборот, любая последовательность, в которой каждый член, начиная со второго равен среднему арифметическому предыдущего и последующего, является арифметической прогрессией.

IV. Первичное закрепление.

  • № 575 аб - устно
  • № 576 авд - устно
  • № 577б - самостоятельно с проверкой

Последовательность (- арифметическая прогрессия. Найдите , если и

Воспользуемся формулой n-ого члена ,

Ответ: -24,2.

Найдите 23-й и n-ый члены арифметической прогрессии -8; -6,5; :

Решение: Первый член арифметической прогрессии равен -8. Найдем разность арифметической прогрессии, для этого надо из последующего члена последовательности вычесть предыдущий: -6,5-(-8)=1,5.

Воспользуемся формулой n-ого члена:

Найдите первый член арифметической прогрессии (), если .

Вспомним начало нашего урока, ребята. Удалось ли за сегодняшний урок узнать что-то новое, сделать какие-то открытия? А какие цели урока мы ставили перед собой? Как Вы считаете, нам удалось достигнуть поставленных целей?

Домашнее задание.

Пункт 25, № 578а, № 580б, №582, №586а, №601а.

Творческое задание для сильных учеников: Докажите, что в арифметической прогрессии для любых номеров, таких что kвыполняются равенства и .

Спасибо за урок, ребята. Вы сегодня хорошо потрудились.

Числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же для данной последовательности числом, называют арифметической прогрессией. Число, которое каждый раз прибавляют к предыдущему числу, называется разностью арифметической прогрессии и обозначается буквой d .

Так, числовая последовательность а 1 ; а 2 ; а 3 ; а 4 ; а 5 ; … а n будет являться арифметической прогрессией, если а 2 = а 1 + d;

а 3 = а 2 + d;

Говорят, что дана арифметическая прогрессия с общим членом а n . Записывают: дана арифметическая прогрессия {a n } .

Арифметическая прогрессия считается определенной, если известны ее первый член a 1 и разность d.

Примеры арифметической прогрессии

Пример 1. 1; 3; 5; 7; 9;… Здесь а 1 = 1; d = 2.

Пример 2. 8; 5; 2; -1; -4; -7; -10;… Здесь а 1 = 8; d =-3.

Пример 3. -16; -12; -8; -4;… Здесь а 1 = -16; d = 4.

Заметим, что каждый член прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов.

В 1 примере второй член 3 =(1+5): 2 ; т.е. а 2 = (а 1 +а 3): 2; третий член 5 =(3+7): 2;

т. е. а 3 = (а 2 +а 4): 2.

Значит, справедлива формула:

Но, на самом деле, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому не только соседних с ним членов, но и равноотстоящих от него членов, т. е.

Обратимся примеру 2 . Число -1 является четвертым членом арифметической прогрессии и одинаково отстоит от первого и седьмого членов (а 1 = 8, а 7 = -10).

По формуле (**) имеем:

Выведем формулу n- го члена арифметической прогрессии.

Итак, второй член арифметической прогрессии мы получим, если к первому прибавим разность d ; третий член получим, если ко второму прибавим разность d или к первому члену прибавим две разности d ; четвертый член получим, если к третьему прибавим разность d или к первому прибавим три разности d и так далее.

Вы уже догадались: а 2 = а 1 + d;

a 3 = a 2 + d = a 1 + 2d;

a 4 = a 3 + d = a 1 + 3d;

…………………….

a n = a n-1 + d = a 1 + (n-1) d.

Полученную формулу a n = a 1 + (n -1) d (***)

называют формулой n -го члена арифметической прогрессии.

Теперь поговорим о том, как найти сумму первых n членов арифметической прогрессии. Обозначим эту сумму через S n .

От перестановки мест слагаемых значение суммы не изменится, поэтому ее можно записать двумя способами.

S n = a 1 + a 2 + a 3 + a 4 + … + a n-3 + a n-2 + a n-1 + a n и

S n = a n + a n-1 + a n-2 + a n-3 + …...+ a 4 + a 3 + a 2 + a 1

Сложим почленно эти два равенства:

2S n = (a 1 + a n) + (a 2 + a n-1) + (a 3 + a n-2) + (a 4 + a n-3) + …

Значения в скобках равны между собой, так как являются суммами равноотстоящих членов ряда, значит, можно записать: 2S n = n· (a 1 + a n).

Получаем формулу суммы первых n членов арифметической прогрессии.

Если заменим а n значением а 1 + (n-1) d по формуле (***), то получим еще одну формулу для суммы первых n членов арифметической прогрессии.

Понимание многих тем по математике и физике связано со знанием свойств числовых рядов. Школьники в 9 классе при изучении предмета "Алгебра" рассматривают одну из важных последовательностей чисел - арифметическую прогрессию. Приведем основные формулы арифметической прогрессии (9 класс), а также примеры их использования для решения задач.

Алгебраическая или арифметическая прогрессия

Числовой ряд, который будет рассмотрен в данной статье, называют двумя разными способами, представленными в названии этого пункта. Итак, под прогрессией арифметической в математике понимают такой числовой ряд, в котором стоящие рядом любые два числа отличаются на одну и ту же величину, носящую название разности. Числа в таком ряду принято обозначать буквами с нижним целочисленным индексом, например, a1, a2, a3 и так далее, где индекс указывает номер элемента ряда.

Учитывая данное выше определение прогрессии арифметической, можно записать следующее равенство: a2-a1 =...=an-an-1=d, здесь d - разность прогрессии алгебраической и n - любое целое число. Если d>0, то можно ожидать, что каждый последующий член ряда будет больше предыдущего, в этом случае говорят о возрастающей прогрессии. Если d

Формулы арифметической прогрессии (9 класс школы)

Рассматриваемый ряд чисел, поскольку является упорядоченным и подчиняется некоторому математическому закону, обладает двумя важными для его использования свойствами:

  • Во-первых, зная всего два числа a1 и d, можно найти любой член последовательности. Это делается с помощью такой формулы: an = a1+(n-1)*d.
  • Во-вторых, для вычисления суммы n членов первых не обязательно складывать их по порядку, поскольку можно воспользоваться следующей формулой: Sn = n*(an+a1)/2.
  • Первую формулу понять просто, так как она является прямым следствием того, что каждый член рассматриваемого ряда отличается от своего соседа на одинаковую разность.

    Вторая формула арифметической прогрессии может быть получена, если обратить внимание на то, что сумма a1+an оказывается эквивалентной суммам a2+an-1, a3+an-2 и так далее. Действительно, поскольку a2 = d+a1, an-2 = -2*d+an, a3 = 2*d+a1, и an-1 = -d+an, то подставляя эти выражения в соответствующие суммы, получим, что они будут одинаковыми. Множитель n/2 во 2-й формуле (для Sn) появляется из-за того, что сумм типа ai+1+an-i оказывается ровно n/2, здесь i - целое число, пробегающее значения от 0 до n/2-1.

    Согласно сохранившимся историческим свидетельствам, формулу для суммы Sn впервые получил Карл Гаусс (знаменитый немецкий математик), когда перед ним была поставлена задача школьным учителем сложить первые 100 чисел.

    Пример задачи №1: найдите разность

    Задачи, в которых ставится вопрос следующим образом: зная формулы арифметической прогрессии, как найти д (d), являются самыми простыми, которые только могут быть для этой темы.

    Приведем такой пример: дана числовая последовательность -5,-2, 1, 4, ..., необходимо определить ее разность, то есть d.

    Сделать это проще простого: необходимо взять два элемента и из большего по счету вычесть меньший. В данном случае имеем: d = -2 - (-5) = 3.

    Чтобы быть наверняка уверенным в полученном ответе, рекомендуется проверить остальные разности, поскольку представленная последовательность может не удовлетворять условию прогрессии алгебраической. Имеем: 1-(-2)=3 и 4-1=3. Эти данные говорят о том, что мы получили правильный результат (d=3) и доказали, что ряд чисел в условии задачи действительно представляет собой прогрессию алгебраическую.

    Пример задачи №2: найдите разность, зная два члена прогрессии

    Рассмотрим еще одну интересную задачу, которая ставится вопросом, как найти разность. Формулу арифметической прогрессии в этом случае необходимо использовать для n-ного члена. Итак, задача: даны первое и пятое числа ряда, который соответствует всем свойствам алгебраической прогрессии, например, это числа a1 = 8 и a5 = -10. Как найти разность d?

    Начинать решение этой задачи следует с записи общего вида формулы для n-ного элемента: an = a1+d*(-1+n). Теперь можно пойти двумя путями: либо подставить сразу числа и работать уже с ними, либо выразить d, а затем переходить к конкретным a1 и a5. Воспользуемся последним способом, получаем: a5 = a1+d*(-1+5) или a5 = 4*d+a1, откуда следует, что d = (a5-a1)/4. Теперь можно спокойно подставить известные данные из условия и получить конечный ответ: d = (-10-8)/4 = -4,5.

    Заметим, что в данном случае разность прогрессии оказалась отрицательной, то есть имеет место убывающая последовательность чисел. На этот факт необходимо обращать внимание при решении задач, чтобы не перепутать знаки "+" и "-". Все формулы, приведенные выше, являются универсальными, поэтому всегда следует их соблюдать независимо от знака чисел, с которыми осуществляются операции.

    Пример решения задачи №3: найдите a1, зная разность и элемент

    Изменим немного условие задачи. Пусть имеются два числа: разность d=6 и 9-й элемент прогрессии a9 = 10. Как найти а1? Формулы арифметической прогрессии остаются неизменными, воспользуемся ими. Для числа a9 имеем следующее выражение: a1+d*(9-1) = a9. Откуда легко получаем первый элемент ряда: a1 = a9-8*d = 10 - 8*6 = -38.

    Пример решения задачи №4: найдите a1, зная два элемента

    Этот вариант задачи является усложненной версией предыдущего. Суть заключается в том же самом, необходимо вычислить a1, однако теперь разность d не известна, а вместо нее дан еще один элемент прогрессии.

    Примером такого типа задач может служить следующий: найдите первое число последовательности, для которой известно, что она является прогрессией арифметической, и что ее 15-й и 23-й элементы равны 7 и 12, соответственно.

    Решать эту задачу необходимо с записи выражения для n-ного члена для каждого известного из условия элемента, имеем: a15 = d*(15-1)+a1 и a23 = d*(23-1)+a1. Как видно, мы получили два линейных уравнения, которые нужно разрешить относительно a1 и d. Поступим так: вычтем из второго уравнения первое, тогда получим такое выражение: a23-a15 = 22*d - 14*d = 8*d. При получении последнего уравнения были опущены значения a1, поскольку они сокращаются при вычитании. Подставляя известные данные, находим разность: d = (a23-a15)/8 = (12-7)/8 = 0,625.

    Значение d необходимо подставить в любую формулу для известного элемента, чтобы получить первый член последовательности: a15 = 14*d+a1, откуда: a1=a15-14*d = 7-14*0,625 = -1,75.

    Проверим полученный результат, для этого найдем a1 через второе выражение: a23 = d*22+a1 или a1 = a23-d*22 = 12 - 0,625*22 = -1,75.

    Пример решения задачи №5: найдите сумму n элементов

    Как можно было заметить, до этого момента для решения использовалась всего одна формула арифметической прогрессии (9 класс). Теперь приведем задачу, для решений которой понадобиться знание второй формулы, то есть для суммы Sn.

    Имеется следующая упорядоченный ряд чисел -1,1, -2,1, -3,1,..., нужно вычислить сумму ее 11 первых элементов.

    Из данного ряда видно, что он является убывающим, и a1 = -1,1. Его разность равна: d = -2,1 - (-1,1) = -1. Теперь определим 11-й член: a11 = 10*d + a1 = -10 + (-1,1) = -11,1. Выполнив подготовительные вычисления, можно воспользоваться отмеченной выше формулой для суммы, имеем: S11 =11*(-1,1 +(-11,1))/2 = -67,1. Поскольку все слагаемые являлись отрицательными числами, то и их сумма имеет соответствующий знак.

    Пример решения задачи №6: найдите сумму элементов от n до m

    Пожалуй, этот тип задач является самым сложным для большинства школьников. Приведем типичный пример: дан ряд чисел 2, 4, 6, 8 ..., необходимо найти сумму с 7-го по 13-й членов.

    Формулы арифметической прогрессии (9 класс) используются точно такие же, как и во всех задачах ранее. Эту задачу рекомендуется решать поэтапно:

  • Сначала найти сумму 13 членов по стандартной формуле.
  • Затем рассчитать эту сумму для 6 первых элементов.
  • После этого вычесть из 1-й суммы 2-ю.
  • Приступим к решению. Так же как и в предыдущем случае, проведем подготовительные вычисления: a6 = 5*d+a1 = 10+2 = 12, a13 = 12*d+a1 = 24+2 = 26.

    Вычислим две суммы: S13 = 13*(2+26)/2 = 182, S6 = 6*(2+12)/2 = 42. Берем разницу и получаем искомый ответ: S7-13 = S13 - S6 = 182-42 = 140. Отметим, что при получении этого значения использовалась в качестве вычитаемого именно сумма 6 элементов прогрессии, поскольку 7-й член входит в сумму S7-13.